Home | Help Center

Endless possibilities in academia

ISSN: 2957-5443
Indexed in: Google Scholar, Dimensions, Crossref
Editor-in-Chief: Lize XIONG
Email: PPM@zentimecorp.com
Submit Review

Perioperative Precision Medicine (PPM) is an open-access, peer-reviewed online journal dedicated to the rapid publication of research on medicine during perioperative period. With the aim to deepen the understanding of the pathogenesis and to promote the development of diagnosis and treatment, PPM provides a platform for clinicians to share their cutting-edge research results in perioperative medicine, hoping to provide a new impetus to the progression of scientific research in perioperative medicine. Articles from experts in this field will offer key insights in the areas of clinical practice, advocacy, education, administration, and research of perioperative precision medicine.


Please join us in this Open-Access endeavor by submitting your high-quality papers to PPM. 

Lastest Issue

The effectiveness of a novel modified retracting arm for transaxillary endoscopic thyroid surgery to minimize complications: A randomized controlled study

Mingling Wang1*, Gaolei Jia2*, Kai Wang3, Haifeng Zhuang4, Li Ma2, Ping Wang4 

1Department of Operating Room, Xuzhou Central Hospital, Xuzhou 221009, China. 2Department of Thyroid, Xuzhou Central Hospital, Xuzhou 221009, China. 3Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, China. 4Department of Nursing, Xuzhou Central Hospital, Xuzhou 221009, China. 

*The authors contribute equally.

Address correspondence to: Ping Wang, Department of Nursing, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou 221009, China. Tel: +86-18952172176; Fax: 0086-0516-83956203;  E-mail: wangkaistream99@xzhmu.edu.cn. Li Ma, Department of Thyroid, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou 221009, China. Tel: +86-18112023690; E-mail: 675694863@ qq.com.

Acknowledgement: This study was financially supported by a grant from the Xuzhou City Science and Technology Project (KC22156). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

DOI: https://doi.org/10.61189/031494xruanc

Received May 17, 2024; Accepted August 9, 2024; Published September 30, 2024

Highlights

● A novel modified retracting arm for transaxillary endoscopic thyroid surgery was designed. 

● The modified hook better exposed and protected the recurrent laryngeal nerve and parathyroid glands.

● The modified retracting arm achieved better visual analog scale and cosmetic scores.

Artificial intelligence in perioperative pain management: A review

Yan Liao1*, Zhanheng Chen1*,Wangzheqi Zhang1*, Lindong Cheng2 , Yanchen Lin2 , Ping Li3 , Miao Zhou4 ,  Mi Li1 , ChunHua Liao

1School of Anesthesiology, Naval Medical University, Shanghai 200433, China. 2Graduate School, Hebei North University, Zhangjiakou 075000, China. 3Graduate School, Wannan Medical College, Wuhu 241000, China. 4Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, China. 

* The authors contribute equally.

Address correspondence to: Miao Zhou, The Affiliated Cancer Hospital of Nanjing Medical University, Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, China. E-mail: zhoumiao2613@163.com; Tel: +86  18217567295. Mi Li, School of Anesthesiology, Naval Medical University, 800 Xiangyin Road, Yangpu District, Shanghai 200433, China. E-mail: limi@smmu.edu.cn; Tel: +86-21-81872033. Chunhua Liao, School of Anesthesiology, Naval Medical University, 800 Xiangyin Road, Yangpu District. Shanghai  200433, China. E-mail: Liaochh7@smmu.edu.cn; Tel: +86 21 81872025.

Acknowledgement: This work was supported by the National Natural Science Foundation of China under Grants 62002297, 62073225, and 61836005, the Science and Technology Commission of Shanghai Municipality under Grant 20XD1434400, talent Development Fund of Shanghai under Grant 2020075, Medical-Engineering Cross Fund of Shanghai Jiao Tong University under Grant YG2022QN043, and the Guangxi Science and Technology Base and Talent Special Project under Grant 2021AC19394. The authors would like to thank all the guest editors and anonymous reviewers for their constructive advice.

DOI: https://doi.org/10.61189/275419wdddvs

Received February 21, 2024; Accepted March 25, 2024; Published September 30, 2024

Highlights

● Artificial intelligence (AI) is lauded for its capacity to resolve intricate problems with unwavering efficiency, devoid of fatigue. To elucidate the potential of AI in perioperative pain management, we have meticulously surveyed a vast array of scholarly works to discern the landscape of research in this multifaceted domain. 

● Conventional perioperative pain studies have primarily confined their scope to clinical aspects. However, this review delves into the amalgamation of AI and perioperative pain, heralding a diverse methodology for pain control. 

● AI's applicability in medical domains, particularly anesthesia, has spawned numerous inquiries into its synergy  with perioperative pain. Yet, a dearth of comprehensive reviews encapsulating the current research milieu, pin  pointing hurdles, and envisioning future directions in this sphere necessitated the present discourse. 

● We herein offer horizontal and vertical assessments of diverse models and algorithms employed in periopera  tive pain management, encapsulated in diagrammatic form for reader accessibility. The compilation of this review draws from a spectrum of online scholarly repositories, thus ensuring a thorough and relevant assembly of insights.

Ultrasound-guided forearm selective nerve block: A bright future on the horizon

Ziwei Xia1,2, Guangkuo Ma1,2, Huanjia Xue1,2, Hui Wu1,2, Liwei Wang1,2, Kai Wang1,2

1Graduate School, Xuzhou Medical University, Xuzhou 221009, Jiangsu Province, China. 2Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China.

Address correspondence to: Kai Wang, Department of Anesthesiology, Xuzhou Central Hospital, No. 199 Jiefang South Road, Quanshan District, Xuzhou 221009, Jiangsu Province, China. Tel: +86-18112012729; E-mail: wangkaistream99@sina.com or 760020230115@xzhmu.edu.cn.

Acknowledgement: This work was supported by the Department of Anesthesiology of Xuzhou Central Hospital. The authors would like to thank all the guest editors and anonymous reviewers for their constructive comments.

DOI: https://doi.org/10.61189/768941essmpc

Received January 25, 2024; Accepted April 2, 2024; Published September 30, 2024

Highlights

● In the realm of forearm, wrist, and hand surgeries, ultrasound-guided forearm selective nerve block techniques offer distinct advantages over alternative methods such as Bier's block, brachial plexus block, and wrist block. These advantages include reduced anesthesia-related time, prolonged duration of analgesia, and minimal inter-ference with upper extremity motor function. 

● Ultrasound-guided forearm selective nerve block stands as a straightforward and conducive anesthesia method ideally suited for distal upper limb surgeries. This approach harmonizes seamlessly with the principles of fast surgical recovery and enhances patient comfort during both diagnostic and therapeutic procedures. 

● Supplementation of dexmedetomidine or dexamethasone in ultrasound-guided selective nerve blocks of the forearm has been shown to significantly prolong the duration of analgesia.

Progress in heatstroke-induced multiple organ damage

Ruilong Li1,2*, Dezhi Guo1,2*, Tianying Li1,2, Panpan Hu1,3, Tianying Xu1

1Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 2College of Basic Medicine, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 3National Key Laboratory of Immunity & Inflammation, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 

* The authors contribute equally.

Address correspondence to: Tianying Xu, Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China. Tel: +86 021 81872029, E-mail: xutianying@smmu.edu.cn; Panpan Hu, Department of Anesthetic Pharmacology, School of Anesthesiology, National Key Laboratory of Immunity & Inflammation, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai  200433, China. Tel: +86 021 81872029, E-mail: hpp510@smmu.edu.cn.

Acknowledgement: This work was supported by the Basic Medical Research Fund of Naval Medical University (2023QN034). The authors would like to thank all the guest editors and anonymous reviewers for their constructive comments.

DOI: https://doi.org/10.61189/313377zqjuff

Received January 23, 2024; Accepted April 29, 2024; Published September 30, 2024

Highlights

● Patients with heatstroke often suffer from multiple organ dysfunction and have a high fatality rate. 

● The molecular mechanisms underlying multiple organ damage in heatstroke are complex. 

● This review outlines the manifestations of multiple organ dysfunction caused by heatstroke and explores the possible molecular mechanisms involved.

Research advances in understanding the role and mechanism of pyroptosis in myocardial ischemia-reperfusion injury

Ziyue Li1, Bailong Hu2, Xiaohua Zou2

1College of Anesthesiology, Guizhou Medical University, Guizhou 550004, China. 2Department of Anesthesiology, the Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China. 

Address correspondence to: Bailong Hu, Department of Anesthesiology, the Affiliated Hospital of Guizhou Medical University, NO. 28 Guiyi Street, Guiyang 550004, Guizhou, China. Phone number: +86-15185184309; E-mail: hubailong@gmc.edu.cn. Xiaohua Zou, Department of Anesthesiology, the Affiliated Hospital of Guizhou Medical University, NO. 28 Guiyi Street, Guiyang 550004, Guizhou, China. Tel: +86-13809416036; Fax: +86-851-86771013; E-mail: zouxiaohuazxh@gmc.edu.cn.

Acknowledgement: This work was supported by the National Natural Science Foundation of China (No. 82160951, 82160224), the project of Guiyang Science and Technology Plan (zhukehe[2024]-2-27), the Cultivate project 2021 for National Natural Science Foundation of China, the Affiliated Hospital of Guizhou Medical University (gyfynsfc-2021-35, gyfynsfc-2021-49).

DOI: https://doi.org/10.61189/434706ysltap

Received December 5, 2023; Accepted February 4, 2024; Published June 30, 2024

Highlights 

Currently, ischemic heart disease ranks as the most prevalent form of primary heart disease. The risk of myocardial ischemia-reperfusion injury, along with its associated mortality, is notably rising among perioperative patients. Recognizing the underlying mechanisms of myocardial ischemia-reperfusion injury and identifying suitable treatments are crucial. Inhibitors targeting the key molecules involved in pyroptosis hold promise as potential therapeutic options for managing myocardial ischemia-reperfusion injury

Difficult airway management in patients with laryngeal tumor: Case series and systematic review

Chenglong Zhu1,3*, Miao Zhou1,4*, Yongchu Hu2, Wenyun Xu2, Zui Zou1,2

1School of Anesthesiology, Naval Medical University, Shanghai 200433, China. 2Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China. 3Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China. 4Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, Jiangsu, China. 

*The authors have contributed equally to this work. 

Address correspondence to: Zui Zou, School of Anesthesiology, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China. Email: zouzui@smmu.edu.cn. Wenyun Xu, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China. Email: xuwenyun@ smmu.edu.cn.

Acknowledgement: This study was funded by the National Natural Science Foundation of China (81670072), the Shanghai Municipal Committee of Science and Technology (20XD1434400) and Special Project on Incubation of Civil-Military Integration Achievements of the Naval Medical University (2022-RH10). Declaration of conflict of interest: None. 

Ethics approval and consent to participate: Chinese Clinical Trial Registry approved this study (ChiCTR2200060783). All procedures and research activities performed in the study were in accordance with the ethical standards of the institutional research committee. Consent was obtained from a legally authorized representative. 

DOI: https://doi.org/10.61189/109678mkmeds

Received November 29, 2023; Accepted January 16, 2024; Published June 30, 2024

Highlights 

● SEEKflex (Safe Easy Endotracheal Kit-flexible) is a modified introducer, which provides a simple and rapid way for intubating patients with laryngeal tumors. 

● With its non-invasive and gentle approach, SEEKflex minimizes patient discomfort, enhancing the overall patient experience. 

● Flexible fiberoptic bronchoscope remains the most frequently used tool for managing difficult airways.

Progress of ultrasound-guided nerve block in foot and ankle arthroscopy

Huanjia Xue1,3, Shengze Yang2,3, Guangkuo Ma1,3, Ziwei Xia1,3, Liwei Wang1,3, Kai Wang 1,3

1Xuzhou Clinical College, 2School of Anesthesiology, Xuzhou Medical University, Xuzhou 221009, China. 3Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, China.

Address correspondence to: Kai Wang, Department of Anesthesiology, Xuzhou Central Hospital, No.199 Jiefang South Road, Quanshan District, Xuzhou 221009, Jiangsu, China. Tel: 18112012729. E-mail: wangkaistream99@ xzhmu.edu.cn.

Acknowledgement: This work was supported by Young Scientist Fund of National Natural Science Foundation of China (81700078) and Xuzhou Medical Key Talents program (XWRCHT20220051).

DOI: https://doi.org/10.61189/601268tfpowt

Received November 5, 2023; Accepted January 30, 2024; Published June 30, 2024

Highlights

● Foot and ankle arthroscopic techniques are vital for diagnosing and treating foot and ankle disorders.

● Ultrasound-guided nerve blocks in the foot and ankle provide precise nerve selection.

Research progress of sphingosine 1-phosphate receptor 3 in the cardiovascular system

Yangmengna Gao1,2, Ran Yuan1,2, Kecheng Zhai1,2, Hui Su1,2, Renke Sun1,2, Shangping Fang1,2 

1School of Anesthesiology, 2Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu 241002, Anhui, China. 

Address correspondence to: Shangping Fang, Anaesthesiology Experimental Training Center, College of Anesthesiology, Wannan Medical College, No.22 Wenchang West Road, Yijiang District, Wuhu 241002, Anhui, China. Tel:+86-19855362767. E-mail: 20180041@wnmc.edu.cn.

Acknowledgement: Key Project Research Fund of Wannan Medical College (WK2022Z10); National College Student Innovation and Entrepreneurship Project (202310368016); Anhui Province College Student Innovation and Entrepreneurship Project (S202210368107, S202210368108); Student Research Funding Project of Wannan Medical College (WK2023XS10).

DOI: https://doi.org/10.61189/076009mwdtns

Received January 25, 2024; Accepted March 19, 2024; Published Jane 30, 2024

Highlights 

● Sphingosine 1-phosphate receptor 3 (S1PR3) promotes the proliferation of vascular endothelial cells and enhances barrier function. 

● S1PR3 is a promising target for clinical treatment of cardiac ischemia-reperfusion, cardiac fibrosis and atherosclerosis. 

● Fingolimod and other modulators of S1PR3 have shown therapeutic efficacy in phase I and II clinical trials for cardiovascular diseases. 

● S1PR3 play crucial roles in the perioperative evaluation and treatment of the cardiovascular system, as well as in sepsis.

Research progress of oxidative stress in sepsis-associated liver injury

Hui Su1,2,Tianying Xu3, Renke Sun1,2, Yu Xiang1,2, Yangmengna Gao1,2, Kecheng Zai1,2, Shangping Fang1,2 

1School of Anesthesiology, 2Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu 241002, China. 3School of Anesthesiology, Department of Anesthetic Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 

Address correspondence to: Shangping Fang, Anesthesia Laboratory and Training Center, School of Anesthesiology, Wannan Medical College, No. 22, Wenchang West Road, Lugang Street, Yijiang District, Wuhu 241002, Anhui, China. Tel: 19855362767; E-mail: 20180041@wnmc.edc.cn.

Acknowledgements: This work was supported by Key Project Research Fund of Wannan Medical College (WK2022Z10) and Research Grant for College Students of Wannan Medical College (WK2022XS26). 

DOI: https://doi.org/10.61189/270899wnwlnz 

Received September 17, 2023; Accepted November 28, 2023; Published March 31, 2024

Highlights 

● The approaches of antioxidant therapy to alleviate sepsis-associated liver injury are summarized from the per spective of oxidative stress in different cells of the liver. 

● Reactive oxygen species, one of the main substances that induce oxidative stress, affects the molecular mecha nism of the relevant signaling pathways. 

 ● Antioxidant therapy is helpful for the recovery of various liver cells in sepsis-associated liver injury and is expect- ed to advance basic and clinical research.

Application of electroencephalography in the management of postoperative cognitive dysfunction

Guangkuo Ma1,2, Ziwei Xia1,2, Huanjia Xue1,2, Hui Wu1,2, Congyou Wu2, Liwei Wang1,2, Kai Wang1,21Graduate School, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China. 2Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.Address correspondence to: Kai Wang, Department of Anesthesiology, Xuzhou Central Hospital, No. 199 Jiefang South Road, Quanshan District, Xuzhou 221009, Jiangsu, China. Tel: 18112012729. E-mail: wangkaistream99@ xzhmu.edu.cn.

Acknowledgement: This work was supported by the Department of Anesthesiology of Xuzhou Central Hospital. DOI: https://doi.org/10.61189/526064kphcum Received November 1, 2023; Accepted November 28, 2023; Published March 31, 2024Highlights● Maintaining anesthesia depth within speciffc ranges, as indicated by electroencephalography monitors, may reduce the risk of postoperative cognitive dysfunction.● Quantitative analysis of electroencephalography data can provide insights into the characteristics of postoperative cognitive dysfunction, aiding in its early detection and diagnosis.● Combining electroencephalography with functional magnetic resonance imaging may enhance the assessment of brain function and improve the accuracy of monitoring devices.

Most Read

Impact of central venous pressure measurement on the prognosis of patients with septic shock: A retrospective analysis of the MIMIC- IV database

Yanchen Lin1, Jing Huang2, Ying Zhang1, Houfeng Li1, Huixiu Hu1, Li Tan3

1Graduate School, Hebei North University, Zhangjiakou 075000, Hebei, China. 2Graduate School, Wannan Medical College, Wuhu 241002, Anhui, China. 3Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing 400030, China.

Address correspondence to: Li Tan, Department of Anesthesiology, Chongqing University Cancer Hospital, No.181 Hanyu Road, Chongqing 400030, China. E-mail: tanlihh@163.com.

Received August 24, 2023; Accepted September 7, 2023; Published September 30, 2023

DOI: https://doi.org/10.61189/377184mkfywu

Highlights

● The measurement of central venous pressure in patients diagnosed with septic shock does not yield prognostic improvements.

● Central venous pressure measurement in patients with septic shock is associated with prolonged ICU stay. 

● Central venous pressure measurement is not advised for patients diagnosed with septic shock.  

Difficult airway management in patients with laryngeal tumor: Case series and systematic review

Chenglong Zhu1,3*, Miao Zhou1,4*, Yongchu Hu2, Wenyun Xu2, Zui Zou1,2

1School of Anesthesiology, Naval Medical University, Shanghai 200433, China. 2Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China. 3Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China. 4Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, Jiangsu, China. 

*The authors have contributed equally to this work. 

Address correspondence to: Zui Zou, School of Anesthesiology, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China. Email: zouzui@smmu.edu.cn. Wenyun Xu, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China. Email: xuwenyun@ smmu.edu.cn.

Acknowledgement: This study was funded by the National Natural Science Foundation of China (81670072), the Shanghai Municipal Committee of Science and Technology (20XD1434400) and Special Project on Incubation of Civil-Military Integration Achievements of the Naval Medical University (2022-RH10). Declaration of conflict of interest: None. 

Ethics approval and consent to participate: Chinese Clinical Trial Registry approved this study (ChiCTR2200060783). All procedures and research activities performed in the study were in accordance with the ethical standards of the institutional research committee. Consent was obtained from a legally authorized representative. 

DOI: https://doi.org/10.61189/109678mkmeds

Received November 29, 2023; Accepted January 16, 2024; Published June 30, 2024

Highlights 

● SEEKflex (Safe Easy Endotracheal Kit-flexible) is a modified introducer, which provides a simple and rapid way for intubating patients with laryngeal tumors. 

● With its non-invasive and gentle approach, SEEKflex minimizes patient discomfort, enhancing the overall patient experience. 

● Flexible fiberoptic bronchoscope remains the most frequently used tool for managing difficult airways.

Research progress of sphingosine 1-phosphate receptor 3 in the cardiovascular system

Yangmengna Gao1,2, Ran Yuan1,2, Kecheng Zhai1,2, Hui Su1,2, Renke Sun1,2, Shangping Fang1,2 

1School of Anesthesiology, 2Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu 241002, Anhui, China. 

Address correspondence to: Shangping Fang, Anaesthesiology Experimental Training Center, College of Anesthesiology, Wannan Medical College, No.22 Wenchang West Road, Yijiang District, Wuhu 241002, Anhui, China. Tel:+86-19855362767. E-mail: 20180041@wnmc.edu.cn.

Acknowledgement: Key Project Research Fund of Wannan Medical College (WK2022Z10); National College Student Innovation and Entrepreneurship Project (202310368016); Anhui Province College Student Innovation and Entrepreneurship Project (S202210368107, S202210368108); Student Research Funding Project of Wannan Medical College (WK2023XS10).

DOI: https://doi.org/10.61189/076009mwdtns

Received January 25, 2024; Accepted March 19, 2024; Published Jane 30, 2024

Highlights 

● Sphingosine 1-phosphate receptor 3 (S1PR3) promotes the proliferation of vascular endothelial cells and enhances barrier function. 

● S1PR3 is a promising target for clinical treatment of cardiac ischemia-reperfusion, cardiac fibrosis and atherosclerosis. 

● Fingolimod and other modulators of S1PR3 have shown therapeutic efficacy in phase I and II clinical trials for cardiovascular diseases. 

● S1PR3 play crucial roles in the perioperative evaluation and treatment of the cardiovascular system, as well as in sepsis.

Research progress of frontier image processing in medical endoscopes

Jinjing Wu1,*, Yang Yuan2,*, Long Liu1, Haipo Cui1, Tianying Xu3, Miao Zhou4, Zhanheng Chen3, Bing Xu3

1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. 2School of Computer Science and Artificial Intelligence, Changzhou University, Jiangsu 213164, China. 3School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 4Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, Jiangsu, China. 

*The authors contribute equally.

Address correspondence to: Haipo Cui, School of Health Science and Engineering, University of Shanghai for Science and Technology, NO.516, Jungong Road, Shanghai 200093, China. E-mail: h_b_cui@163.com, Tel: +86-21-55271290; Bing Xu, School of Anesthesiology, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China. E-mail: mzxubing1992@163.com, Tel: +86-21-81872030; Zhanheng Chen, School of Anesthesiology, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China. E-mail: chenzhanheng17@mails.ucas.ac.cn, Tel: +86 21 81872034. 

Received July 19, 2023; Accepted September 6, 2023; Published September 30, 2023

DOI: https://doi.org/10.61189/663074tcakcn

Highlights

● Medical endoscopic images can provide doctors with more accurate, visualized, and three-dimensional views of various internal tissues.

● Image processing techniques such as image denoising, image deblurring, image enhancement, and image segmentation can improve the imaging quality of endoscopes.

Medical image processing using graph convolutional networks: A review

Long Liu1, Xiaobo Zhu3, Jinjing Wu1, Qianyuan Hu1, Haipo Cui1, Zhanheng Chen2, Tianying Xu2

1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. 2School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 3College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China.

Address correspondence to: Haipo Cui, School of Health Science and Engineering, University of Shanghai for Science and Technology, NO.516, Jungong Road, Shanghai 200093, China. Tel: +86-21-55271290, E-mail: h_b_cui@163.com; Zhanheng Chen, School of Anesthesiology, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China. Tel: +86 21 81872034, E-mail: chenzhanheng17@mails.ucas.ac.cn; Tianying Xu, School of Anesthesiology, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China. Tel: +86 21 81872029, E-mail: xty7910@163.com.

Received July 19, 2023; Accepted September 7, 2023; Published September 30, 2023

DOI: https://doi.org/10.61189/803479emewvv

Highlights

● The development history of convolutional neural networks and the transition to graph convolutional networks are introduced, as well as the evolution of network layers.

● Graph convolutional networks have been widely demonstrated to be applicable in various perioperative medical image processing scenarios.

● This is the first comprehensive review of the applications of graph convolutional networks in image segmentation, image reconstruction, disease prediction, lesion detection and localization, disease classification and diagnosis, and surgical interventions.

Progress of end-tidal carbon dioxide monitoring in non-intubated patients

Yue Wang1, Miao Zhou1, Pengxin Li2, Lianbing Gu2

1Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, Jiangsu, China. 2Xuzhou Medical University, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221002, Jiangsu, China.

Address correspondence to: Lianbing Gu, The Affiliated Cancer Hospital of Nanjing Medical University, Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, Jiangsu, China. E-mail: 13951947684@163.com.

Received March 15, 2023; Accepted April 27, 2023; Published June 30, 2023

DOI: https://doi.org/10.61189/343605tjncke

Highlights

● This review focuses on literature regarding end-tidal carbon dioxide monitoring for non-intubated patients.

● Partial pressure of carbon dioxide monitoring can benefit non-intubated patients.

● As carbon dioxide detection technology continues to improve, end-tidal carbon dioxide monitoring is expected to be used in more medical scenarios.

Progress of artificial intelligence in anesthesia and perioperative medicine

Wen-Hui Guo1,*, Qing-Lai Zang2,*, Bing Xu1, Tian-Ying Xu1, Zhan-Heng Chen1, Miao Zhou3

1School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 2Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China. 3Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, Jiangsu, China.

*The authors contribute equally.

Address correspondence to: Zhan-Heng Chen, School of Anesthesiology, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China. Tel: +86 21 81872034. E-mail: chenzhanheng17@mails.ucas.ac.cn; Miao Zhou, Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, Jiangsu, China. Tel: +86 18217567295. E-mail: zhoumiao@jszlyy.com.cn.

Acknowledgment: This work was supported by the National Natural Science Foundation of China (62002297, 62073225, and 61836005), the Science and Technology Commission of Shanghai Municipality (20XD1434400), the Talent Development Fund of Shanghai (2020075), the Medical-Engineering Cross Fund of Shanghai Jiao Tong University (YG2022QN043), and the Guangxi Science and Technology Base and Talent Special Project (2021AC19394). The authors would like to thank all the guest editors and anonymous reviewers for their constructive advice.

DOI: https://doi.org/10.61189/536468bkwzzn

Received July 21, 2023; Accepted November 15, 2023; Published March 31, 2024

Highlights

● This review introduces the core concepts of artificial intelligence (AI) and describes the most commonly encountered computerized functioning of AI in anesthesiology.

● This survey systematically presents the main clinical applications of AI in anesthesia and perioperative medicine according to the perioperative phases.

● The advantages and disadvantages of introducing AI into the medical field are also discussed to explore the career development direction of anesthesiologists in the future.

On launching a new journal 'Perioperative Precision Medicine': a rapidly evolving discipline

Lize Xiong

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for An-esthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.

Published June 30, 2023DOI: https://doi.org/10.61189/064156dduwdo

Roles of post-translational modifications of C-type lectin receptor-induced signaling cascades in innate immune responses against Candida albicans

Ping Li1, Lindong Cheng2, Chunhua Liao3, Jianhua Xia4, Li Tan5

1Graduate School, Wannan Medical College, Anhui 241000, China. 2Graduate School, Hebei North University, Hebei 075000, China. 3School of Anesthesiology, Naval Medical University, Shanghai 200433, China. 4Department of Anesthesiology, Shanghai Pudong New District People's Hospital, Shanghai 200433, China. 5Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing 400030, China.

Address correspondence to: Li Tan, Department of Anesthesiology, Chongqing University Cancer Hospital, No.181 Hanyu Road, Chongqing 400030, China. E-mail: tanlihh@163.com.

Received July 18, 2023; Accepted September 11, 2023; Published September 30, 2023

DOI: https://doi.org/10.61189/550782gbbqxs

Highlights

● Risk of invasive candida infection and its related mortality are increasing significantly in perioperative patients.

● C-type lectin receptors are the primary pattern-recognition receptors for fungi-induced host defense and innate immune activation.

● Protein post-translational modifications are one of the core factors in host innate immune regulation.

● Post-translational modifications sites on proteins are anticipated to serve as potential targets for modulating anti-fungal immunity.

Advances on ultrasound-guided radial artery catheterization

Zhezhe Fan1, Zhanheng Chen2, Saluj Dev Luitel3,4, Bing Xu2

1College of Basic Medicine, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 2School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 3Foreign Training Group, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 4College of Medicine, Nepalese Army Institute of Health Sciences, Kathmandu 44600, Nepal.

Address correspondence to: Bing Xu, School of Anesthesiology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China. Tel: +86 21 81872030. E-mail: mzxubing1992@163.com.

Received February 27, 2023; Accepted March 31, 2023; Published June 30, 2023DOI: https://doi.org/10.61189/298294zwziab

Highlights

● Ultrasound-guided radial artery catheterization can effectively improve the success rate of first-time puncture and reduce the total puncture time and the incidence of complications.

● Ultrasound-guided radial artery catheterization methods should be selected based on the specific characteristics of individual patients.