Home | Help Center

Endless possibilities in academia

ISSN: 2957-5443
Indexed in: Google Scholar, Dimensions, Crossref
Editor-in-Chief: Lize XIONG
Submit Review
Volume 2, Issue 3
Progress in heatstroke-induced multiple organ damage

Ruilong Li1,2*, Dezhi Guo1,2*, Tianying Li1,2, Panpan Hu1,3, Tianying Xu1


1Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 2College of Basic Medicine, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 3National Key Laboratory of Immunity & Inflammation, Second Military Medical University/Naval Medical University, Shanghai 200433, China. 

* The authors contribute equally.


Address correspondence to: Tianying Xu, Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China. Tel: +86 021 81872029, E-mail: xutianying@smmu.edu.cn; Panpan Hu, Department of Anesthetic Pharmacology, School of Anesthesiology, National Key Laboratory of Immunity & Inflammation, Second Military Medical University/Naval Medical University, 800 Xiangyin Road, Shanghai  200433, China. Tel: +86 021 81872029, E-mail: hpp510@smmu.edu.cn.


Acknowledgement: This work was supported by the Basic Medical Research Fund of Naval Medical University (2023QN034). The authors would like to thank all the guest editors and anonymous reviewers for their constructive comments.


DOI: https://doi.org/10.61189/313377zqjuff


Received January 23, 2024; Accepted April 29, 2024; Published September 30, 2024


Highlights

● Patients with heatstroke often suffer from multiple organ dysfunction and have a high fatality rate. 

● The molecular mechanisms underlying multiple organ damage in heatstroke are complex. 

● This review outlines the manifestations of multiple organ dysfunction caused by heatstroke and explores the possible molecular mechanisms involved.

Review Article |Published on: 30 September 2024

[Perioperative Precision Medicine] 2024; 2 (3): 73-89

DOI: https://doi.org/10.61189/313377zqjuff
PDF
CITE
Ultrasound-guided forearm selective nerve block: A bright future on the horizon

Ziwei Xia1,2, Guangkuo Ma1,2, Huanjia Xue1,2, Hui Wu1,2, Liwei Wang1,2, Kai Wang1,2


1Graduate School, Xuzhou Medical University, Xuzhou 221009, Jiangsu Province, China. 2Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China.


Address correspondence to: Kai Wang, Department of Anesthesiology, Xuzhou Central Hospital, No. 199 Jiefang South Road, Quanshan District, Xuzhou 221009, Jiangsu Province, China. Tel: +86-18112012729; E-mail: wangkaistream99@sina.com or 760020230115@xzhmu.edu.cn.


Acknowledgement: This work was supported by the Department of Anesthesiology of Xuzhou Central Hospital. The authors would like to thank all the guest editors and anonymous reviewers for their constructive comments.


DOI: https://doi.org/10.61189/768941essmpc


Received January 25, 2024; Accepted April 2, 2024; Published September 30, 2024


Highlights

● In the realm of forearm, wrist, and hand surgeries, ultrasound-guided forearm selective nerve block techniques offer distinct advantages over alternative methods such as Bier's block, brachial plexus block, and wrist block. These advantages include reduced anesthesia-related time, prolonged duration of analgesia, and minimal inter-ference with upper extremity motor function. 

● Ultrasound-guided forearm selective nerve block stands as a straightforward and conducive anesthesia method ideally suited for distal upper limb surgeries. This approach harmonizes seamlessly with the principles of fast surgical recovery and enhances patient comfort during both diagnostic and therapeutic procedures. 

● Supplementation of dexmedetomidine or dexamethasone in ultrasound-guided selective nerve blocks of the forearm has been shown to significantly prolong the duration of analgesia.

Review Article |Published on: 30 September 2024

[Perioperative Precision Medicine] 2024; 2 (3): 90-98

DOI: https://doi.org/10.61189/768941essmpc
PDF
CITE
Artificial intelligence in perioperative pain management: A review

Yan Liao1*, Zhanheng Chen1*,Wangzheqi Zhang1*, Lindong Cheng2 , Yanchen Lin2 , Ping Li3 , Miao Zhou4 ,  Mi Li1 , ChunHua Liao


1School of Anesthesiology, Naval Medical University, Shanghai 200433, China. 2Graduate School, Hebei North University, Zhangjiakou 075000, China. 3Graduate School, Wannan Medical College, Wuhu 241000, China. 4Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, China. 

* The authors contribute equally.


Address correspondence to: Miao Zhou, The Affiliated Cancer Hospital of Nanjing Medical University, Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing 210009, China. E-mail: zhoumiao2613@163.com; Tel: +86  18217567295. Mi Li, School of Anesthesiology, Naval Medical University, 800 Xiangyin Road, Yangpu District, Shanghai 200433, China. E-mail: limi@smmu.edu.cn; Tel: +86-21-81872033. Chunhua Liao, School of Anesthesiology, Naval Medical University, 800 Xiangyin Road, Yangpu District. Shanghai  200433, China. E-mail: Liaochh7@smmu.edu.cn; Tel: +86 21 81872025.


Acknowledgement: This work was supported by the National Natural Science Foundation of China under Grants 62002297, 62073225, and 61836005, the Science and Technology Commission of Shanghai Municipality under Grant 20XD1434400, talent Development Fund of Shanghai under Grant 2020075, Medical-Engineering Cross Fund of Shanghai Jiao Tong University under Grant YG2022QN043, and the Guangxi Science and Technology Base and Talent Special Project under Grant 2021AC19394. The authors would like to thank all the guest editors and anonymous reviewers for their constructive advice.


DOI: https://doi.org/10.61189/275419wdddvs


Received February 21, 2024; Accepted March 25, 2024; Published September 30, 2024


Highlights

● Artificial intelligence (AI) is lauded for its capacity to resolve intricate problems with unwavering efficiency, devoid of fatigue. To elucidate the potential of AI in perioperative pain management, we have meticulously surveyed a vast array of scholarly works to discern the landscape of research in this multifaceted domain. 

● Conventional perioperative pain studies have primarily confined their scope to clinical aspects. However, this review delves into the amalgamation of AI and perioperative pain, heralding a diverse methodology for pain control. 

● AI's applicability in medical domains, particularly anesthesia, has spawned numerous inquiries into its synergy  with perioperative pain. Yet, a dearth of comprehensive reviews encapsulating the current research milieu, pin  pointing hurdles, and envisioning future directions in this sphere necessitated the present discourse. 

● We herein offer horizontal and vertical assessments of diverse models and algorithms employed in periopera  tive pain management, encapsulated in diagrammatic form for reader accessibility. The compilation of this review draws from a spectrum of online scholarly repositories, thus ensuring a thorough and relevant assembly of insights.

Review Article |Published on: 30 September 2024

[Perioperative Precision Medicine] 2024; 2 (3): 99-115

DOI: https://doi.org/10.61189/275419wdddvs
PDF
CITE
The effectiveness of a novel modified retracting arm for transaxillary endoscopic thyroid surgery to minimize complications: A randomized controlled study

Mingling Wang1*, Gaolei Jia2*, Kai Wang3, Haifeng Zhuang4, Li Ma2, Ping Wang4 


1Department of Operating Room, Xuzhou Central Hospital, Xuzhou 221009, China. 2Department of Thyroid, Xuzhou Central Hospital, Xuzhou 221009, China. 3Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, China. 4Department of Nursing, Xuzhou Central Hospital, Xuzhou 221009, China. 

*The authors contribute equally.


Address correspondence to: Ping Wang, Department of Nursing, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou 221009, China. Tel: +86-18952172176; Fax: 0086-0516-83956203;  E-mail: wangkaistream99@xzhmu.edu.cn. Li Ma, Department of Thyroid, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou 221009, China. Tel: +86-18112023690; E-mail: 675694863@ qq.com.


Acknowledgement: This study was financially supported by a grant from the Xuzhou City Science and Technology Project (KC22156). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.


DOI: https://doi.org/10.61189/031494xruanc


Received May 17, 2024; Accepted August 9, 2024; Published September 30, 2024


Highlights

● A novel modified retracting arm for transaxillary endoscopic thyroid surgery was designed. 

● The modified hook better exposed and protected the recurrent laryngeal nerve and parathyroid glands.

● The modified retracting arm achieved better visual analog scale and cosmetic scores.

Research Article |Published on: 30 September 2024

[Perioperative Precision Medicine] 2024; 2 (3): 116-123

DOI: https://doi.org/10.61189/031494xruanc
PDF
CITE