Haonan Geng1, Xudong Guo1, Haibo Lin1, Youguo Hao2, Guojie Zhang3
1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. 2Shanghai Putuo District People’s Hospital, Shanghai 200060, China. 3LingYuan Iron and Steel CO., LTD, Lingyuan 122500, Liaoning Province, China.
Address correspondence to: Xudong Guo, School of Health Science and Engineering, University of Shanghai for Science and Technology, No.516 Jungong Road, Yangpu District, Shanghai 200093, China. Email: guoxd@usst.edu.cn; Youguo Hao, Shanghai Putuo District Central Hospital, No.1291 Jiangning Road, Putuo District, Shanghai, 200060, China. Email: youguohao6@163.com.
DOI: https://doi.org/10.61189/673672yizrwd
Received September 8, 2024; Accepted November 6, 2024; Published December 31,2024
Highlights
●Gait prediction relies on multimodal sensor data, and the acquisition of multimodal information, such as physical sensors and bioelectrical signal sensors, is introduced in order to monitor and analyze the lower limb movement in real time, and provide a data basis for prediction.● The application of machine learning algorithms in gait prediction technology, such as Support Vector Machine, Random Forest, and Back Propagation Neural Network, is reviewed to construct an optimized gait prediction model, which provides effective support for the intelligent control of exoskeleton.● Compared with machine learning algorithms, the article summarizes the researchers’ efforts to extract and un derstand the hidden patterns in gait data by constructing neural network models related to different deep learning algorithms, which are used to improve the accuracy and robustness of gait prediction.
Review Article |Published on: 31 December 2024
[Progress in Medical Devices] 2024; 2 (4): 161-173