首页/Home | 帮助中心/Help Center

基于病理组学的AI模型助力胶质瘤全流程诊疗决策

Artificial intelligence in pathomics optimizes end-to-end clinical workflow in glioma

贺琳茜,刘 欢,章 京*,张秀明

浙江大学医学院附属第一医院临床病理科,杭州 310000


[作者简介] 贺琳茜,硕士. E-mail: 22218690@zju.edu.cn

* 通信作者(Corresponding authors). Tel: 0571-87236114, E-mail: jzhang1961@zju.edu.cn;1508056@zju.edu.cn

[收稿日期] 2025-03-16 [接受日期] 2025-03-27 [发表日期] 2025-03-30


伦理声明 无 

利益冲突 所有作者声明不存在利益冲突。 

作者贡献 贺琳茜:文章撰写;刘欢:文章修改;章京、张秀明:文章定稿。

DOIhttps://doi.org/10.61189/568021tletbk 

摘要/Abstract

人工智能在精准医疗,尤其是神经病理学中的应用日益广泛,展现出显著的作用和潜力。基于先进的深度学习神经网络模型,人工智能不仅能够对胶质瘤进行分类分型、分级诊断,提升病理诊断的准确性和效率,而且能够预测分子改变, 节约人力、物力和财力。更为重要的是,人工智能可以进行预后预测,评估患者生存期及复发风险,为个性化的治疗和随访策 略提供参考。随着未来数据孤岛、“黑箱”算法等问题的逐步解决,人工智能有望在胶质瘤全流程诊疗中,为病理医生和临床医生的决策提供有力支持。

Artificial intelligence (AI) is increasingly utilized in precision medicine, with notable applications observed in neuropathology. In glioma diagnostics, histological classification, molecular subtyping, and WHO grading are automated by AI-based platforms, enhancing diagnostic consistency and operational efficiency. Critically, AI predicts prognosis, assesses survival and recurrence risks, and guides personalized treatment strategies. As issues like data silos and “black-box” algorithms are resolved, AI is poised to support decision-making by pathologists and clinicians throughout the clinical workflow of glioma management.

关键词/Keywords: 胶质瘤;人工智能;神经网络;预后 / glioma; artificial intelligence; neural networks; prognosis

贺琳茜,刘欢,章京,等. 基于病理组学的AI模型助力胶质瘤全流程诊疗决策[J]. 元宇宙医学,2025,2(1):44-50. 

HE L Q,LIU H,ZHANG J,et al. Artificial intelligence in pathomics optimizes end-to-end clinical workflow in glioma[J]. Metaverse Med,2025,2(1):44-50. 

复制/Copy