首页/Home | 帮助中心/Help Center

基于专家系统和神经常微分方程的延迟混合模型构建

Delayed hybrid model construction based on expert system and neural ordinary differential equation

徐成喜1,张健1,姚佳烽2*

1. 苏州健通医疗科技有限公司,苏州 215300

2. 南京航空航天大学,南京 210016


[作者简介] 徐成喜, 博士, 高级工程师. E-mail: charles@kaonter.com

* 通信作者(Corresponding author). Tel: 17715275835,E-mail: jiaf.yao@nuaa.edu.cn

[收稿日期] 2024-03-08 [接受日期] 2024-03-25 [发表日期] 2024-03-28


伦理声明    本研究延用了Qian等[1]使用的数据集,严格按照数据保护法规处理和存储个人数据。

利益冲突    所有作者声明不存在利益冲突

作者贡献    徐成喜:项目负责人,负责研究的概念设计和研究方案的制定、数据分析、论文初稿撰写和稿件审阅。张健:数据分析、论文图表设计、写作和修订。姚佳烽:数据分析、结果解释、论文审阅和校对。

DOI: https://doi.org/10.61189/528667vzkwua

摘要/Abstract

机器学习(machine learningML)模型往往依赖于大规模的训练数据集,且在解释潜在变量方面存在不足。该文提出的创新性延迟潜在混合模型(delayed latent hybridization modelDLHM) 引入了分段常数延迟(piecewise-constant delays, PCDs)机制,以模拟药理学及疾病进展过程中不可避免的延迟现象。通过融入延迟机制,该研究在动态系统建模设计中加入了高层次的专家知识(即延迟),旨在提升模型在预测药理动态和疾病进展方面的性能,进而增强模型对患者的可解释性和沟通效率。研究结果表明,延迟潜在混合模型在疾病进展预测任务中显示出了优化的预测可靠性与一致性。该文利用COVID-19患者的合成数据对模型性能进行了验证,标志着在考虑延迟效应和专家知识的生物科学建模领域取得了显著进步。

Machine learning (ML) models often require large training datasets and lack the interpretability of latent variables. This novel delayed latent hybridization model (DLHM) incorporates piecewise-constant delays (PCDs) to model delays that are inevitably present in pharmacology and disease progression, a feature missing in existing approaches that leverage expert knowledge. By incorporating delays, we contributed a high-level expert knowledge in the design of dynamic systems modeling, which enhanced performance in predicting pharmacological and disease progression dynamics and aims to improve interpretability and communication to patients. Our findings indicate that DLHM demonstrates improved predictive reliability and congruence with the disease progression prediction task. The paper validates the model’s performance using synthetic data from COVID-19 patients, offering a significant advancement in biosciences modeling with delayed effects and expert knowledge.

关键词/Keywords: 机器学习;延迟潜在混合模型;分段常数延迟;疾病进展预测 / machine learning; delayed latent hybridization model; piecewise-constant delays; disease progression prediction

徐成喜, 张健, 姚佳烽. 基于专家系统和神经常微分方程的延迟混合模型构建[J]. 元宇宙医学, 2024, 1(1): 59-65.

XU C X, ZHANG J, YAO J F. Delayed hybrid model based on expert system and neural ordinary differential equation[J]. Metaverse Med, 2024, 1(1): 59-65.

复制/Copy