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Highlights
● Artificial intelligence (AI) is lauded for its capacity to resolve intricate problems with unwavering efficiency, devoid  
  of fatigue. To elucidate the potential of AI in perioperative pain management, we have meticulously surveyed a  
  vast array of scholarly works to discern the landscape of research in this multifaceted domain.
● Conventional perioperative pain studies have primarily confined their scope to clinical aspects. However, this re
  view delves into the amalgamation of AI and perioperative pain, heralding a diverse methodology for pain control.
● AI’s applicability in medical domains, particularly anesthesia, has spawned numerous inquiries into its synergy 
  with perioperative pain. Yet, a dearth of comprehensive reviews encapsulating the current research milieu, pin
  pointing hurdles, and envisioning future directions in this sphere necessitated the present discourse.
● We herein offer horizontal and vertical assessments of diverse models and algorithms employed in periopera
  tive pain management, encapsulated in diagrammatic form for reader accessibility. The compilation of this re  
  view draws from a spectrum of online scholarly repositories, thus ensuring a thorough and relevant assembly of 
  insights.

Abstract

Artificial intelligence (AI) leverages its swift, precise, and fatigue-resistant problem-solving abilities to significantly 
influence anesthetic practices, ranging from monitoring the depth of anesthesia to controlling its delivery and pre-
dicting events. Within the domain of anesthesia, pain management plays a pivotal role. This review examines the 
promises and challenges of integrating AI into perioperative pain management, offering an in-depth analysis of 
their converging interfaces. Given the breadth of research in perioperative pain management, the review centers 
on the quality of training datasets, the integrity of experimental outcomes, and the diversity of algorithmic ap-
proaches. We conducted a thorough examination of studies from electronic databases, grouping them into three 
core themes: pain assessment, therapeutic interventions, and the forecasting of pain management-related ad-
verse effects. Subsequently, we addressed the limitations of AI application, such as the need for enhanced predic-
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Introduction

Artificial intelligence (AI)

AI is characterized by the “science and engi-
neering of creating intelligent machines,” as 
conceptualized in prior research. In 1950, the 
seminal work of Alan Turing, a mathematician 
and AI’s progenitor, proposed the notion of 
machines emulating human cognitive process-
es [1]. Over the past several decades, AI has 
burgeoned into a multifaceted discipline, en-
compassing specialized areas such as machine 
learning, deep learning, neural networks, com-
puter vision, among others [1, 2]. Numerous 
taxonomies have been proposed to categorize 
AI. Primordially, AI is bifurcated into Artificial 
Narrow Intelligence, which predominates in 
specific domains, Artificial General Intelligence, 
which approximates human-level intelligence, 
and Artificial Superintelligence, which surpass-
es human capabilities by fostering innovation 
and social interaction [3].

The advent of advanced technology has pro-
pelled AI into a multitude of sectors, including 
robotics, natural language processing, simula-
tion, learning systems, problem-solving meth-
odologies, and gaming. As depicted in Figure 1, 
each of these sectors is further subdivided into 
a tapestry of specialized fields, reflecting the 
intricate taxonomy that arises from AI’s diverse 
applications [4]. Machine learning, a subset 
of AI algorithms, is particularly adept at ad-
dressing challenges through classification and 
regression techniques, capable of parsing and 
interpreting diverse data formats, ranging from 
text and numerical datasets to visual and au-
ditory information [5]. Drawing inspiration from 
the complexities of the nervous system, deep 
neural networks represent a class of models 
that bridge the gap between those informed by 
the workings of biological neurons and those 
that delve into the cognitive aspects of human 
information processing. These intricate net-
works are capable of processing limited inputs 
and producing high-quality outputs by efficiently 
leveraging the scarce data contained within 
their hidden layers [6]. Computer vision is a 
critical component of AI, empowering machines 
with the ability to comprehend and decipher 
visual information, encompassing images and 
videos. This field extracts salient features from 
visual data, such as hue, form, and texture. AI 

has achieved substantial advancement and is 
extensively applied across various domains, 
each with its subset of specializations and ar-
eas of emphasis [5].

AI’s paramount advantage over human cogni-
tion lies in its capacity for predictive analytics 
when confronting extensive explanatory vari-
ables or intricate interdependencies among 
features. In the face of complex challenges, 
the human mind can laboriously parse through 
pertinent experiences, resulting in a taxing 
process. In contrast, AI leverages data-driven 
methodologies and extensive datasets, af-
fording it a distinctive edge in managing such 
complexities. The technology can seamlessly 
compute the most nuanced computations 
and tenaciously pursue solutions without fa-
tigue [7]. For instance, AI can encapsulate a 
multitude of variables, referred to as ‘model 
features,’ and thereafter elucidate intricate 
correlations among these features [8]. Sub-
sequently, AI-based algorithms and models 
are being implemented across a spectrum of 
medical disciplines, including anesthesiology. 
AI is augmenting the oversight of anesthetic 
depth, forecasting the likelihood of deleterious 
events throughout anesthesia, supporting ul-
trasound-guided interventions, and assisting in 
the prediction and administration of pain phe-
notypes. Across all these domains, the amalga-
mation of AI is demonstrating enhanced effica-
cy when compared to conventional approaches 
[5, 9].

Perioperative pain management

What is pain? Extensive research on pain has 
been conducted from perspectives of mole-
cules, cells, etc. [10]. The prevalent conceptual-
ization of pain characterizes it as an “unpleas-
ant sensory and emotional experience linked to 
real or potential tissue harm, or articulated in 
terms of such harm [11].” Prevalence of periop-
erative pain is considerable, particularly in the 
postoperative phase. Data indicate that roughly 
half of all surgical patients report moderate to 
severe pain levels within two weeks post-oper-
ation, with over 10% experiencing severe to ex-
treme pain intensity [12]. This phenomenon ex-
tends beyond major surgical procedures, being 
a widespread occurrence across various types 
of surgery [13]. Effective pain management 
thus constitutes a critical component of the an-

tive accuracy, privacy concerns, and the development of a robust database. Building upon these considerations, 
we propose avenues for future research that harness the potential of AI to effectively contribute to perioperative 
pain management, aiming to refine the clinical utility of this technology.

Keywords: Artificial intelligence, pain management, perioperative pain, acute pain
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esthetic process. In alignment with the Periop-
erative Surgical Home objectives set forth by 
the American Society of Anesthesiologists (ASA), 
optimized perioperative pain control is shown to 
enhance patient recovery while also conferring 
societal and economic benefits [14]. However, 
conventional methods often struggle to achieve 
optimal pain management outcomes. Inade-
quate pain control can precipitate a myriad of 
issues for patients, encompassing both physi-
cal and mental health challenges. These may 
include increased susceptibility to morbidity 
across various organ systems, the development 
of depression and anxiety, prolonged pain hy-
persensitivity potentially progressing to chronic 

pain, the use of opioids and its associated ad-
verse effects, elevated medical expenses, and 
a diminution in life quality [13-15].

Overcoming these obstacles and refining 
perioperative pain management are paramount 
to bolstering patient recovery and optimizing 
healthcare provision. In response to the poten-
tial issues outlined, medical professionals such 
as surgeons and anesthesiologists have en-
deavored to implement improvements. Over the 
past few decades, there has been a significant 
evolution in the conceptual frameworks and 
methodologies underpinning perioperative pain 
management [16, 17]. The ASA-hosted Pain 

Figure 1. Subfields of AI. AI, artificial intelligence. 
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Table 1. Summary of works on “Pain Assessment”

Author/Year Data Type Patients/
Datasets Target Results Model(best)

2015, Sikka [28] Videos 50 Pain detection, 
pain intensity classification AUC = 0.84-0.94 CVML

2022, Fontaine 
[29] Images 2,180 facial 

expressions
Pain intensity classification
(pain intensity>4/10 and 

>7/10)
ACC = 53%

Sensitivity = 89.7%, 77.5% ResNet-18 CNN

2022, Chen [30] Images, 
videos

UNBC-Mc-
Master 

Dataset,
Wilkie’s Vid-
eo Dataset

Pain intensity 
classification

ACC = 87%
AUC = 0.94 MIL, MCIL

2019, Hu [31]
Functional 

near-infrared 
spectroscopy

21 Pain detection 
and localization ACC = 80.37% 3-layer NN

2021, Han [32] EEG 67 Pain intensity 
classification ACC = 92.54% LDA

2015, Gruss 
[33]

Bio-poten-
tials 85

Classification
(baseline vs. pain 

tolerance threshold),
(baseline vs. pain thresh-

old)

Identification rate = 90.94%, 
79.29% SVM

2013, Ben-Israel 
[34]

Physiological 
parameters 25

NoL (nociception level) 
development and valida-

tion
AUC = 0.97

R = 0.88
Non-linear Random 
Forest regression

2021, Gao [35] Clinical data 300 Pain intensity 
classification ACC = 95.6% BP

2023, 
Pinzon-Arenas 

[36]
EDA 36 Pain intensity 

classification ACC = 91.5%
1D-CNN,

LSTM,
CNN-LSTM

2024, Carlini 
[37]

Facial ex-
pression 73 Pain intensity 

classification
ACC = 77.1%
F1 = 80.8%

AUC = 76.0%
CNN

2021, Salekin 
[38]

Visual and 
vocal signals

Neonatal 
Pain Dataset

Pain intensity 
classification

ACC = 79%
AUC = 0.87 VGG-Net, LSTM

2021, Choi [39] PPG 120 Pain intensity 
classification

ACC = 71.4%
AUC = 0.76

Sensitivity = 68.3%
Specificity = 73.8%

CNN

2021, Baharloo 
[40]

Pain intensity 
measured 
manually

218 Assess pain’s 
slow/fast dynamics

F score = 0.79
AUC = 0.704 MLP

2016, Nickerson 
[41] Clinical data 26,090 Pain intensity 

classification
MSE = 5.54, 4.96, 5.14, 6.09

Correlation Coefficient = 
0.604, 0.606, 0.593, 0.545

Several NN models 
(Elastic Net)

2015, Tighe [42] Clinical data 8,071 Pain detection AUC = 0.643-0.727 Several ML models 
(LASSO)

2021, Tan [43] Clinical data 20,716 Pain detection

AUC = 0.763-0.772
Sensitivity = 67.0-69.4%
Specificity = 70.9-76.2%

PPV = 28.3-31.8%
NPV = 93.3-93.5%

Several ML models 
(Logistic regression)

2023, Llo-
rián-Salvador 

[44]

Radiomics, 
semantic 

and clinical 
features

261 Pain intensity 
classification AUROC = 0.62±0.01 ML

2024，Berg [45] Clinical data 22,707 Pain detection
C statistic (back

pain and leg pain) = 0.78(95% 
CI, 0.77-0.78), 0.76 (95% CI, 

0.76-0.77)
ML

Note: If more than one structure/task were investigated in a study, the corresponding information are reported in the same order 
in which the structures are presented in the “Target”/ “Results”/”Model” columns. ACC, accuracy; AUC, area under curve; CVML, 
computer vision and machine-learning; MIL, multiple instance learning; MCIL, multiple clustered instance learning; NN, neural 
network; EEG, electroencephalography; LDA, linear discriminant analysis; SVM, support vector machine; BP, back propagation; 
EDA, electrodermal activity; PPG, photoplethysmogram; MLP, multilayer perceptron; LSTM, long short term memory; CNN, con-
volutional neural network; MSE, Mean Squared Error; PPV, Positive predictive values; NPV, negative predictive values; LASSO, 
least absolute shrinkage and selection operator; ML, machine learning; Clinical data, it refers to risk factors that may influence 
patients’ cognitive of pain intensity.
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Summit in 2019 reached a consensus on foun-
dational principles for the acute management 
of perioperative pain [18]. These principles 
include integral preoperative assessment, the 
adoption of multimodal analgesia, personalized 
treatment plans, and the necessity for adapt-
able modifications to care strategies.

Reliable data are derived from clinical reg-
istries, administrative databases and so on. 
Based on the development of AI and the anx-
ious desire for improving the status quo of 
perioperative pain management in order to 
follow advanced theories and guidelines, big 
data analysis has been applied in many fields 
of perioperative pain management, for exam-
ple, assessing postoperative pain outcomes, 
forecasting opioid utilization, evaluating the ef-
ficiency of multimodal pain management strat-
egies, and predicting the adverse effect caused 
by inaccurate pain [19].

In an era marked by the burgeoning individ-
ualization, predictability, and complexity in 
perioperative pain management, AI stands as 
a powerful tool for navigating and interpreting 
the intricate tapestry of data relationships. 
AI’s capabilities are particularly well-aligned 
with the evolving needs of perioperative pain 
care, which is increasingly reliant on precise, 
data-driven strategies. This review delves into 
the synergy between AI and perioperative pain 
management, examining its integration in the 
realms of pain assessment, therapeutic inter-
ventions, and the prevention of adverse effects 
associated with suboptimal pain control. At the 
outset of each section, we provide a concise 
overview of the field’s current landscape. Fur-
thermore, we critically appraise the limitations 
of this field and speculate on its future trajecto-
ry, highlighting the potential of AI to revolution-
ize perioperative pain care.

AI in perioperative pain assessment

Up to now, most forms of pain assessing in-
struments applied in the clinical are rating 
scales, checklists or questionnaires, psycho-
logical screening or observational (behavioral) 
measures. For example, visual analogue scale, 
verbal rating scale, numerical rating scale and 
face pain scale are the most frequent tools 
used for pain assessment, which rely on pa-
tients’ own appraisal of pain sensory [20-22]. 
Current methods to measure pain in the clinic 
are almost restricted to these classical but uni-
dimensional tools while evidence shows there 
exists some bias. These unidimensional tools 
cannot always reflect the real reception of pain 
due to their subjective attributes [23-25].

In addition, the existing pain assessing tools 
have trouble with infants, critical patients or 
narcose patients who are unable to speak up, 
and patients with intellectual disability or de-
mentia who cannot express themselves clearly. 
Apart from that, inconsistency, slowness and 
discontinuation of pain prediction are problems 
to be solved, too.

The use of AI in perioperative pain assessment

Only there is an accurate outcome for pain 
assessment, can doctors carry out better 
schemes and adjust plans of drug administra-
tion or technique implementation timely for an 
optimum analgesia [26]. Advantages of AI can 
help achieve this goal. There has already been 
a concept called automated pain recognition 
(APR). APR is an external observation method 
into which hardware and software components 
with AI are integrated. Through data collected 
from diverse parts of human body shown in Fig-
ure 2, such as facial expression, vocal informa-
tion, body language, physiological data and so 
forth, APR can detect, locate, and classify pain 
[27]. As for the perioperative pain with AI, we 
divide the current research directions into three 
parts: facial expression, neural system signals 
and biopotential and multidimensional factors, 
combined with AI respectively to measure pain. 
In this review, 14 papers were identified to be 
combinations of AI and perioperative pain as-
sessment, and their main features are present-
ed in the Table 1.

Facial expression

To explore the secrets between facial expres-
sion and pain intensity, researchers have made 
great efforts, including animal research [46]. 
Even with high precision in animal experiments, 
algorithms for human have a long way to go 
since the quantity of human’s facial muscles is 
too large to locate and analyze. In 2015, Sikka 
and team introduced a method for evaluating 
postoperative pain in children using computer 
vision and machine learning [28]. Their model, 
trained on facial expressions from 50 patients 
aged 5 to 18 after laparoscopic appendectomy, 
showed accurate pain detection and quanti-
fication with an area under the curve (AUC) 
of 0.84 to 0.94. While slightly outperforming 
nurses and matching parents’ assessments, 
the model’s accuracy was the highest under 
static conditions and was limited to pediatric 
use. Subsequent research has expanded the 
use of AI in pain assessment, contributing to a 
growing body of evidence in this field [28]. Fon-
taine and colleagues developed a convolutional 



104

Perioperative Precision Medicine 2024; 2 (3): 99-115. PPM24020252

Perioperative Precision Medicine

neural network to analyze facial expressions 
from 1,189 patients, including 2,810 pre- and 
postoperative images, to assess pain intensity 
using the numeric rating scale. The model’s 
performance exceeded that of nurses, with 
higher sensitivity in detecting moderate (> 
4/10) and severe (> 7/10) pain, at 89.7% and 
77.5%, respectively, compared to 44.9% and 
17.0% in nurses.

However, the overall accuracy of AI (53%) and 
nurses (14.9%) highlight areas for technolog-
ical advancement in pain assessment [29]. 
Chen and team in China created novel data 
structures to encode facial muscle action units 
from individual video frames and sequences 

[30]. Their model achieved 87% precision and 
an AUC of 0.94 in pain recognition, validated 
against the UNBC-McMaster Shoulder Pain Ex-
pression dataset [30]. In a meticulous analysis, 
Carlini and collaborators have isolated facial 
expression features unique to newborns to 
construct VGG-face and N-CNN deep learning 
models for the assessment of pain. The study 
records an accuracy of 77.1%, an F1 score of 
80.8%, and an AUC of 76.0% [37]. Pain percep-
tion is a profoundly personal affair, and indi-
viduals often exhibit alterations in their facial 
expressions when experiencing intense discom-
fort. Consequently, the discerning observation 
of these nuanced changes in expression can 
serve as a clever means to gauge an individu-

Figure 2. Basis and objectives of automated pain recognition. (A) Data processing in automated pain recognition; 
(B) Technical infrastructure of multimodality; (C) Monitoring of pain intensity; (D) Proposed monitoring of pain in-
tensity, pain localization and quality.
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al’s state of distress. This approach is particu-
larly beneficial when assessing neonates who 
are unable to articulate their own feelings, yet 
its utility among adults with intact language ca-
pabilities is comparatively limited.

Neural system signals and biopotentials

As deep researches carried out, certain brain 
areas have been scoped to be relevant to pain 
location, severity, duration, and other charac-
ters [47]. More and more researchers cast their 
attention on neural system signals and biopo-
tentials to measure pain. Different stimuli elicit 
different pain responses, and they are detect-
ed by neural imaging instruments combined 
with given experimental variable as input. For 
example, on the basis of multivariate pattern 
analysis, functional magnetic resonance image 
was used to detect if there are special signals 
in certain brain areas while positron emission 
tomography and arterial spin labeling were 
applied to examine the cerebral blood flow to 
infer the presence of pain [48]. Electroenceph-
alography derived from cortical activity is a 
commonly electronical approach to detect pain. 
In 2019, Hu et al. measured patients’ cortical 
activity during acute pain and used neural net-
work-based AI algorithm to analyze pain diction 
and location [31]. The data were collected and 
transmitted into visual images by Augmented 
Reality devices, in which they achieved an ac-
curacy of 80.37% for pain or no pain discrim-
ination. Neural oscillations combined with AI 
to predict pain also gained a high precision of 
92.54%. Restrained by the limited sample, this 
study didn’t testify the specificality of electroen-
cephalography oscillations to acute pain which 
may limit clinical localization diagnostics [32]. 
Beyond neural activity, various biopotentials 
such as electromyography, skin conductance, 
and electrocardiography are employed to train 
algorithms that gauge pain intensity, tolerance, 
and onset. Our research yielded a 90.94% clas-
sification accuracy for distinguishing baseline 
from pain tolerance, and a 79.29% accuracy 
for differentiating baseline from pain onset [33]. 
A predictive model leveraging electrodermal ac-
tivity as a biomarker for pain has been refined, 
demonstrating superior performance in de-
tecting severe pain with a precision of 91.5%. 
Additionally, the model has pioneered contin-
uous pain detection, representing substantial 
advancement [36].

Other factors

Pain assessment has traditionally relied on uni-
dimensional tools, which are inadequate due to 
the multifaceted nature of pain [23]. Advances 

in multidimensional assessments incorporat-
ing AI, such as machine learning techniques, 
have emerged to improve accuracy. Machine 
learning algorithms have been engineered to 
analyze data from various parameters, such as 
plethysmograph waveforms and heart rate, in 
pre-operative patients, significantly improving 
the assessment of nociceptive responses. This 
is evidenced by an AUC of 0.97, markedly supe-
rior to the AUCs of individual parameters, which 
ranged from 0.56 to 0.74. Nonetheless, this 
method is currently applicable only to patients 
with ASA physical statuses I-II [34]. In addition, 
to predict postoperative pain after root canal 
treatment, Gao et al. collected data from 300 
patients undergoing root canal treatment [35]. 
They established relationships between post-
operative pain and 13 biophysical parameters 
(personal, inflammatory reaction, operative 
procedure factors) via building neural network 
models using MATLAB 7.0 neural network tool-
box and obtained an accuracy of 95.60%.

Furthermore, data of the pain intensity on early 
postoperative days, multimodal spatial-tem-
poral approach including signals of vision and 
hearing, manually measured pain intensity 
ratings and photolethysmogram spectrograms 
were exploited to be indicators applied in as-
sessing pain intensity with AUC = 0.87, 0.76, 
0.74, respectively. In conclusion, such indica-
tors and algorithms still show space for im-
provement. As the data mentioned aforesaid in 
this paragraph, though AUC of machine learn-
ing model has achieved 0.97, its application is 
very limited. So future work may concentrate on 
indicators which are more easily to capture and 
analyze. Also, optimizing algorithm for pain pre-
diction or even specified location is deserving 
expectation [38-40]. Utilizing data from a co-
hort of 261 volunteers, including radiomics, se-
mantic, and clinical features, researchers have 
developed a machine learning model capable 
of predicting the pain response in patients 
suffering from painful spinal bone metastases. 
Specifically, the model predicts the comprehen-
sive pain response following palliative radio-
therapy [44].

Research indicates that while methods to 
assess pain generally exhibit good accuracy, 
those utilizing neural signals and biopotentials 
as biomarkers achieve higher averages of preci-
sion or sensitivity. However, the cost associated 
with these methods can limit their widespread 
patient adoption. In response, researchers 
have focused on enhancing systems by refining 
algorithms. For example, in a recent prospec-
tive multicenter study, a machine learning mod-
el was developed to predict postoperative pain 
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following lumbar disc herniation surgery, involv-
ing a total of 22,707 participants. The model 
yielded C statistics ranging from 0.75 to 0.80 
for back pain and 0.74 to 0.77 for leg pain pre-
dictions [45]. Nickerson et al. built 4 models to 
evaluate accuracy of pain intensity and found 
that the Elastic Net performed the best to pre-
dict pain intensity with mean squared error of 
4.96 and correlation coefficient of 0.606 [41]. 

Besides, Tighe et al. developed five models to 
assess their efficacy in predicting severe post-
operative pain, with the least absolute shrink-
age and selection operator model emerging as 
the most effective, boasting an AUC of 0.704 
[42]. When comparing regression methods to 
machine learning models for predicting break-
through pain during labor neuraxial analgesia, 
the machine learning models edged out the 
competition slightly. In practical terms, the two 
approaches exhibited similar performance, with 
AUCs ranging from 0.763 to 0.772, sensitivities 
from 67.0 to 69.4%, specificities from 70.9 to 
76.2%, positive predictive values from 28.3 
to 31.8%, and negative predictive values from 
93.3 to 93.5%. These results suggest that fur-
ther research and algorithmic refinement are 
necessary to enhance current prediction capa-
bilities [43].

Moreover, each independent study has intro-
duced distinct algorithms for comparative anal-
ysis, utilizing a heterogeneous array of data. 
Consequently, the optimal results from these 
disparate investigations offer limited utility for 
cross-comparison. As efforts to refine accuracy 
persist, relentless exploration remains an im-
perative. Clinical data, such as vital signs, are 
relatively accessible, making it objectively infor-
mative to learn from these vital signs to predict 
pain. However, the majority of current studies 
are retrospective, thereby suffering from a con-
siderable degree of lag.

AI in perioperative pain treatment

In terms of perioperative analgesia, patients 
hold high expectations on comfortableness, 
and the requirements of analgesia vary among 
different patients [49]. To meet patient needs, 
opioid drug was prescribed beyond their real 
needs, leading to opioid epidemic, which in-
duced thousands of citizens’ addiction and 
death [50, 51]. Consequently, more flexible and 
secure techniques are in urgent needs due to 
the contradiction between patients’ ever-grow-
ing expectation for better pain management 
and inadequate antalgic development. To solve 
this problem, scientists have made unremit-
ting efforts. Thus, patient-controlled analgesia 

(PCA), a medical device applied in analgesia, 
which is used for patients to adjust dosage of 
drugs according to the sensory of pain based 
on the prescription, was invented [52]. With 
the development of technology, there are a few 
types of PCA, from traditional PCA, wireless PCA 
to AI-assisted PCA which is discussed in this ar-
ticle [53].

Although PCA is one of the most popular tech-
nologies applied in analgesia, anesthesiologists 
also use nerve block in intraoperative general 
anesthetic or postoperative analgesia courses 
[14]. Nerve block owns its unique advantages 
in perioperative pain management, such as 
a decrease in the opioid use, shortening the 
length of stay, and a more agreement with en-
hanced recovery after surgery protocols [16]. 
However, some problems in the nerve block 
field remain to be solved. For example, it’s hard 
to precisely localize a nerve, or it may damage 
important anatomical structures near the target 
nerve like arteries or other nerves [54, 55]. In 
this review, we identified a total of 8 articles in-
vestigated combinations of AI and perioperative 
pain treatment, and their main characteristics 
are reported in the Table 2.

AI in pain treatment

As mentioned above, when combined with AI, 
many things change. In the next paragraphs, 
we’ll discuss how AI is applied in PCA and nerve 
block.

PCA

Back to 2012, on the premise of having 
learned 280 attributes of 1,099 patients, Hu et 
al. developed a predictive model for analgesic 
dosing [56]. They utilized a decision tree-based 
algorithm to forecast both total and PCA drug 
requirements based on the initial two-hour con-
sumption. Their model achieved an accuracy 
of 80.9% for total dosage and 73.1% for PCA 
dosage predictions. Despite the labor-intensive 
process of manually collecting data at the time, 
another study employed a multi-model regres-
sion tree (MRT) approach to analyze the pro-
files of 3,052 IV-PCA patients, aiming to predict 
analgesic usage. MRT outperformed their pro-
posed algorithms, human expert predictions, 
and traditional methods like linear regression 
and F-text, with the lowest root mean square 
error. The researchers intentioned to enhance 
the model by integrating expert knowledge into 
the MRT system, moving towards a model that 
is both data-driven and knowledge-driven [57]. 
Research has suggested that the analgesia no-
ciception index correlates with pain medication 
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dosage, potentially enabling the prediction of 
drug consumption using AI [64]. By employing 
various machine learning models, investigators 
explored the relationship between analgesia 
nociception index and the administration of 
intravenous remifentanil. Analysis of data from 
15 patients undergoing cholecystectomy sur-
gery at specific time points revealed that the 
support vector machines (SVM) model yielded 
the highest accuracy of 81%. However, the 
small sample size limits the generalizability of 
these findings [58].

In contrast, Nair et al. analyzed pre-operative 
data from 13,700 adult patients, including 
patient characteristics, procedures, and other 
factors that could influence post-operative pain 
and opioid consumption [59]. These data were 
split into training and validation sets for model 
training and testing. The researchers observed 
outcomes throughout both the pre-operative 
and post-operative phases and found only 
a minimal difference in prediction accuracy 
between the two periods, suggesting that AI al-
gorithms can effectively predict post-operative 
opioid usage based on pre-operative data. How-

ever, as opioid usage increased, accuracy rates 
declined from 89% to 43%. It is important to 
note that this study was conducted at a single 
center and focused solely on outpatients, which 
may introduce bias into the results.

AI has indeed enhanced the precision of PCA 
by improving drug infusion accuracy. However, 
there are limitations to its application. For in-
stance, the role of genetic and psychological 
factors in the efficacy of analgesic drugs, as 
reported in some studies, has not been fully 
integrated into AI models due to a lack of com-
prehensive research in these areas and the 
absence of detailed genomic and psychological 
patient data [65- 68]. Furthermore, the quality 
of the data sources could be improved; many 
studies have been confined to single centers 
or have utilized datasets that are too limited in 
scope.

Nerve block

As early as 2011, Tighe et al. gathered perioper-
ative data from 349 patients to develop predic-
tion algorithms [60]. Five different algorithms—

Table 2. Summary of works on “Pain Treatment”

Author/Year Data Type Patients/
Dataset Target Results Model(best)

2012, Hu [56] PCA usage 1,099

Strategies of drug infusion
(Total Analgesic Consump-

tion and
PCA Analgesic Require-

ment)

ACC = 80.9%
ACC = 71.3%

Decision tree-based 
learning

2018, Hu [57] Clinical data 3,052 Strategies of drug infusion
The least RMSE
 (compared with 
human experts)

MRT

2018, Gonzalez 
[58] ANI signal 15 Strategies of drug infusion ACC = 81% Several ML models 

(SVM)

2020, Nair [59] Clinical data 13,700 Prediction on drug dosage ACC = 72% Several ML models 
(Random Forest)

2011, Tighe [60] Clinical data 349 Predict needs for nerve 
block AUC = 0.7 Several ML models 

(AD Tree)

2021, Liu [61] Ultrasound 
images 100 Assist nerve block

ACC enhance-
ment = 0.5-

12.5%
SegNet Model

2022, Yang [62] Ultrasound 
images 1,126 Assist 

nerve block

ACC = 96%
Sensitivity = 

97.7%
Specificity = 

84.6%

CNN

2016, Smistad 
[63] CT images

48 ultra-
sound image 
sequences

Locate anatomic markers Average DSC = 
0.91 Kalman filter

Note: If more than one structure/task were investigated in a study, the corresponding results are reported in 
the same order in which the structures are presented in the “Target”/“Results”/”Model” columns. PCA, patient 
controlled analgesia; ACC, accuracy; AUC, area under curve; RMSE, root mean square error; MRT, multimodal 
regression tree; SVM, support vector machine; ANI, analgesia nociception index; ML, machine learning; CNN, 
convolutional neural network; CT, computed tomography; AD Tree, alternating decision tree; DSC, dice similar-
ity coefficient; Clinical data, it refers to risk factors that may influence the dosage of drug or the likelihood one 
needs nerve block.
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BayesNet, multilayer perceptron, SVM, ADTree, 
and simple logistic regression—were used to 
forecast the need for femoral nerve block after 
anterior cruciate ligament surgery. The ADTree 
algorithm emerged as the most effective, with 
an AUC of 0.7 in cross-validation. However, 
the complexity of machine learning algorithms 
and the limited understanding among clinical 
physicians at the time posed a challenge. The 
study’s limitations include a small sample size 
and the absence of single-unit predictors. Sub-
sequent reports have shown that AI-assisted 
ultrasound nerve block outperforms traditional 
methods in terms of accuracy and reduced op-
eration time. The AI model’s accuracy enhance-
ment ranged from 0.5% to 12.5%, suggesting 
more efficient anesthesia and a reduction in 
post-operative complications, particularly in 
scapular fracture surgeries [61]. In the realm 
of nerve localization, AI has shown remarkable 
prowess. By utilizing AI algorithms, anatomical 
markers specific to nerves were learned and 
translated into sonography guidance, facilitat-
ing procedures such as inter-scalene, supracla-
vicular, and infraclavicular blocks. The AI-assist-
ed system significantly enhanced the accuracy 
of nerve location for anesthesiologists, achiev-
ing a 96% accuracy rate, with 97.7% sensitivity 
and 84.6% specificity [62]. The integration of 
ultrasound with AI is marked by the attribute 
of real-time functionality. A real-time 3D vessel 
reconstruction algorithm, derived from an ex-
tended Kalman filter, was employed to locate, 
allocate, and reconstruct the 3D model of the 
femoral artery during ultrasound-guided femo-
ral nerve block procedures. This tracking algo-
rithm demonstrated high precision and rapid 
processing in identifying the anatomical posi-
tion of the femoral artery, yielding an average 
dice similarity coefficient of 0.91 [63].

While AI has significantly streamlined nerve 
block procedures, particularly by improving pre-
cision in nerve location, there is ongoing need 
for advancements. The challenges in nerve 
block are not confined to the identification of 
anatomical markers; there are also discrep-
ancies between ultrasound anatomical recog-
nition and the coordination of the needle and 
probe. Aspects such as the initial scan location, 
pressure, tilt, rotation, and angulation of the 
probe needle remain under the control of prac-
titioners. These areas could represent future 
directions for AI development to enhance its 
capabilities in nerve block procedures.

Risk prediction of adverse effects associated 
with pain management

Many factors and reasons contribute to chal-

lenges in the process of perioperative pain 
management, including anesthesia, patients, 
and surgeries, which give rise to intraoperative 
hypotension and bradycardia, postoperative uri-
nary retention (POUR) and so on [69]. Among 
all these factors, opioid use matters a lot. 
Although multimodal analgesia has been advo-
cated to optimize effects of analgesia and to re-
duce opioid side effects, opioid usage still plays 
an important part in pain management and it 
can bring many side effects like nausea and 
vomiting, constipation, respiratory depression 
and so forth [70, 71]. Since adverse effects 
caused by nerve block could mainly be avoid-
ed through locating precisely, details on which 
are not introduced here. Common and severe 
adverse reactions resulted from analgesic med-
ications are mainly discussed in the Table 3.

AI in adverse event prediction

Overdose of opioid use

Chronic opioid use, previously encapsulated 
by the term “opioid extended use,” is now fur-
ther complicated by evidence that surgery can 
become a risk factor [86]. The critical nature 
of identifying and forecasting opioid overdose 
looms large. Investigations, such as those led 
by Karhade, have tested the application of AI 
in predicting continued opioid prescriptions 
post-surgery. These trials focused on preoper-
ative data and biophysical patient characteris-
tics from various surgical procedures. Utilizing 
a dataset of 5,413 patients with lumbar disc 
herniation, a study evaluated the efficacy of 
five machine learning models in predicting 
continued opioid use. Findings highlighted 
that 7.7% of patients experienced extended 
opioid prescription, with the Elastic-net Penal-
ized Logistic Regression model exhibiting the 
least bias and a commendable calibration rate 
(c-statistic = 0.81), thus emerging as the most 
effective among the models tested [72]. Subse-
quent research by Karhade et al. exploring the 
postoperative opioid use in patients following 
total hip arthroplasty and anterior cervical dis-
cectomy and fusion corroborated the utility of 
the Elastic-net Penalized Logistic Regression 
and Stochastic Gradient Boosting algorithms, 
with c-statistics of 0.77 and 0.81, respectively 
[73, 74]. In addition, Klemt et al. developed five 
machine learning models to analyze clinical 
data and forecast the risk of prolonged opioid 
use, achieving high accuracy in predictions (AUC 
> 80%) [75]. These models not only predicted 
risk but also identified the relative importance 
of each risk factor, enabling more objective de-
cision-making than subjective expert judgment. 
Klemt’s work highlighted that a preoperative 
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Table 3. Summary of works on “Adverse Effects Associated with Pain Management”

Author/Year Data Type
Pa-

tients/
Data-
sets

Target Results Model(best)

2019, Karhade 
[72]

Clinical 
data 5,413 Predict prolonged 

opioid use c-statistic = 0.81 Several ML models (Elas-
tic Net Penalized Logistic)

2019, Karhade 
[73]

Clinical 
data 5,507 Predict prolonged 

opioid use c-statistic = 0.77 Several ML models (Elas-
tic Net Penalized Logistic)

2019, Karhade 
[74]

Clinical 
data 2,737 Predict prolonged 

opioid use c-statistic = 0.81
Several ML models (Sto-
chastic Gradient Boost-

ing)
2022, Klemt 

[75]
Clinical 

data 8,873 Predict prolonged 
opioid use AUC > 80% Several ML models (ANN)

2006, Peng [76] Clinical 
data 1,086 Predict occurrence 

of PONV

ACC = 83.3%
Specificity = 85.0%
Sensitivity = 77.9%

AUC = 0.814
Several classifiers (ANN)

2012, Bassanezi 
[77]

Clinical 
data 198 Predict occurrence 

of PONV AUC = 0.72 Fuzzy logic

2014, Gong [78] Clinical 
data 195 Predict occurrence 

of PONV
AUC = 0.761
AUC = 0.900 LR, ANN

2016, Wu [79] Clinical 
data 195 Predict occurrence 

of PONV
AUC = 0.734
AUC = 0.929 LR, SVM

2016, Nickerson 
[41]

Clinical 
data

26,090 
clinical 
records

Predict occurrence 
of POUR ACC = 66.0% Several ML models (SVM)

2022, Porche 
[80]

Clinical 
data 891 Predict occurrence 

of POUR

AUC = 0.753
Specificity = 68.2%
Sensitivity = 72.9%

PPV = 43.4%
NPV = 88.2%

Combination of binomial 
logistic model and MLP

2018, Hatib [81] Arterial wave-
form 1,334

Predict occurrence 
of hypotension
(before 15min, 

10min, 5min respec-
tively)

AUC = 0.95, 0.95, 
0.97

Specificity = 88%, 
89%, 92%

Sensitivity = 90%, 
92%, 97%

LR

2021, Lee [82] Bio-signal 
waveforms 3,301

Predict occurrence 
of hypotension

(invasive and non-in-
vasive groups)

AUC = 0.897, 0.762
less MAE than non-AI 

method
CNN

2020, Solomon 
[83]

Clinical 
data 62,182

Predict occurrence 
of bradycardia

(3 phases during the 
procedure)

AUC = 0.81, 0.87, 0.89
PPV at 95% specificity 

= 0.30, 0.29, 0.15
GBM

2020, Chou [84] ABP
83,905 

ABP 
waves

Predict occurrence 
of bradycardia

Specificity = 99.74 ± 
0.07%

Sensitivity = 93.12 ± 
1.24%

ACC = 99.37 ± 0.10%
Kappa coefficient = 

93.92 ± 0.92%.

Several classifiers (DT)

2019, Jungquist 
[85]

Electronic 
monitoring 
biomedical 

data

60 Predict occurrence 
of OIRD ACC = 80% SVM

Note: If more than one structure/task were investigated in a study, the corresponding results are reported in the 
same order in which the structures are presented in the “Target”/“Results”/”Model” columns. ACC, accuracy; 
AUC, area under curve; ML, machine learning; PONV, postoperative nausea and vomiting; LR, logistic regression; 
ANN, artificial neural network; SVM, support vector machine, POUR, post-operative urinary retention; PPV, Positive 
predictive values; NPV, negative predictive values; MLP, multilayer perceptron; CNN, convolutional neural network; 
GBM, gradient boosting machine; DT, decision tree; OIRD, opined-induced respiratory depression; ABP, arterial 
blood pressure; MAE, mean absolute error; Clinical data, it refers to risk factors that may contribute to an occur-
rence of a clinical event.
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opioid use duration of more than 90 days was 
a potent predictor of extended postoperative 
opioid prescription.

The aforementioned studies, while rich in 
sample size, are limited by their retrospective 
design, which lacks diverse experimental classi-
fication. Furthermore, the samples were drawn 
from a tertiary referral center, thus potentially 
lacking broader population representation.

Nausea and vomiting

Postoperative nausea and vomiting (PONV), as 
one of the most common complications after 
surgeries, often leads to patient dissatisfaction. 
Many well-established and potential risk fac-
tors were detected or supposed to cause PONV 
among which intraoperative and postoperative 
opioid use plays a significant role [87]. 

In exploring the intersection of AI and predic-
tion of PONV, researchers initiated studies as 
early as 2006. They constructed an artificial 
neural network (ANN) from a dataset of 1,086 
patient profiles to predict PONV based on mul-
tiple risk factors. Concurrently, four alternative 
algorithms—Naive Bayesian classifier, logistic 
regression, Koivuranta score, and simplified 
Apfel score—were developed for comparative 
analysis. The ANN demonstrated superior per-
formance, with an accuracy of 83.3%, an AUC 
of 0.814, a sensitivity of 85.0%, and a specifici-
ty of 77.9%, asserting its dominance among the 
five models tested [76].

In a 2012 study, the Eberhart score was ex-
tensively utilized to predict PONV in pediatric 
patients. However, its efficacy has been ques-
tioned by the emergence of fuzzy logic systems, 
which offer enhanced predictive capabilities by 
analyzing preoperative risk factors. The findings 
revealed that the Eberhart score achieved an 
AUC of 0.62, in contrast to the fuzzy logic mod-
el, which attained an AUC of 0.72 [77]. But at 
that time, it remained unknown how much does 
every risk factor contributes to the occurrence 
of PONV. Later, new methods were introduced 
by Wu and Gong et al. in the prediction work 
looking for better ways of predicting the PONV 
during the patient-controlled epidural analgesia 
[78, 79]. Logistic regression model, ANN, SVM 
obtained great results, with fairly high accuracy 
and AUC of 0.734, 0.900, 0.929, respectively. 
Also, they found female sex is the strongest risk 
factor in patient-controlled epidural analgesia 
[78, 79]. Pity is that only small samples were 
collected and were from single center, so deep-
er research is needed to validate the outcomes.

Urinary retention

POUR affects 5-70% of patients, prolonging 
hospital stays and raising the risk of urinary 
tract infections. Anesthesia and analgesic use 
are key factors contributing to POUR develop-
ment [88]. 

In 2016, on the basis of stacked neural net-
work, Nickerson et al. updated the classifica-
tion neural network, by setting an upper limit 
on neuron weight vector norms and rectifying 
linear unit activation functions [41]. They used 
an updated algorithm to estimate the risk of 
complications of POUR and obtained an accu-
racy of 66.0% using classifiers to predict risks 
of POUR, achieving more powerful results than 
traditional methods. However, the algorithm 
could not determine the exact time of POUR on-
set. Porche et al. developed a model combining 
a binomial logistic model and a multilayer per-
ceptron, trained on preoperative data including 
pain and opioid use, to predict POUR incidence 
[80]. While achieving an AUC of 0.753, the 
model’s specificity and sensitivity for prediction 
were only 68.2% and 72.9%, respectively.

Hypotension and bradycardia

When conducting epidural analgesia, hypoten-
sion is a very common side effect due to phys-
iological principles of this technique, whose 
incidence ranks from 0 to 50% [89]. There is 
an even higher incidence of hypotension of spi-
nal-epidural analgesia than epidural analgesia 
[90]. Intraoperative blood pressure changes 
in an imperceptible way, so identifying it early 
helps predict hypotension which may lead to 
unfavorable patient outcomes like malignant 
bradycardia, issue hypoperfusion, and organ 
dysfunction [91].

In 2018, Hatib et al. utilized invasive arterial 
waveforms to create algorithms capable of 
predicting intraoperative hypotension with high 
accuracy [81]. The algorithm accurately pre-
dicted hypotension 15, 10, and 5 minutes be-
fore it occurred, achieving AUC values of 0.95, 
0.95, and 0.97, respectively, with specificities 
of 88%, 89%, and 92%, and sensitivities of 
90%, 92%, and 97%. The precision of the pre-
dictions increased as the time of occurrence 
approached [81]. But it’s an invasive approach. 
If it’s non-invasive, it will be more acceptable 
for it takes safety into account. In 2021, Lee 
et al. developed algorithms capable of predict-
ing real-time intraoperative hypotension from 
multiple bio-signals, including arterial pressure 
waveforms, capnography, photoplethysmogra-
phy, and electrocardiography [82]. The study 
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compared invasive and noninvasive methods, 
revealing that multichannel models outper-
formed single bio-signal models in terms of 
accuracy and mean absolute error, with AUC 
values of 0.897 and 0.762, respectively. None-
theless, the extent of blood pressure decrease 
and the timing of appropriate medical interven-
tions remain uncertain.

Bradycardia may happen during the epidural 
or spinal analgesia, and it can also be a sub-
sequence of hypotension [92]. Solomon et al. 
constructed logistic regression models using 
preoperative and real-time intraoperative data 
to predict the occurrence of severe bradycar-
dia following hypotension at various stages of 
surgery, achieving AUC values of 0.81, 0.87, 
and 0.89 for induction (TP1), procedure start 
(TP2), and 30 minutes post-procedure (TP3), 
respectively [83]. They identified the most sig-
nificant risk factors for each surgical phase and 
confirmed the effectiveness of their models. 
However, by raising the threshold for vital signs, 
the true incidence of toxic events may be higher 
than reported. In another research, Chou et al. 
used arterial blood pressure waves to develop 
a neural network and decision tree to detect 
changes predictive of extreme bradycardia, 
finding the decision tree model to be the most 
accurate with 99% specificity and accuracy, 
and a sensitivity of 93.12% [84].

Respiratory depression

Despite the fact that opioid-induced respira-
tory depression (OIRD) is rare, aftermath of it 
can be severe, even fatal [93]. Jungquist et al. 
enrolled 60 patients who underwent surgery, 
monitoring their respiratory parameters like 
SpO2 and end-tidal CO2 levels on the first day 
of their surgery [85]. Further, they constructed 
machine learning models to analyze these data 
to predict OIRD. With an 80% accuracy rate, 
their models can predict an OIRD before a real 
event happens. But this is observational re-
search, lacking higher level of evidence.

Limitations of the current AI techniques

Nowadays, human is at a stage called artificial 
narrow intelligence, which allows the comple-
tion of single task but with narrow border ap-
plication. Away from superintelligence, there is 
still a long distance to trek [94].

Firstly, there is significant scope for enhancing 
the predictive accuracy of AI. Present-day AI 
systems lack foolproof precision, and even the 
most rudimentary algorithms can exhibit bias-
es. This is particularly pertinent in the field of 

medicine, and particularly in anesthesia, where 
all interventions involve the human body, leav-
ing little room for errors. In the context of pain 
assessment, as previously mentioned, studies 
have seldom reported accuracy rates exceeding 
90%. Furthermore, the data utilized as input 
for AI are, at best, historical; this implies that AI 
learning may be compromised by flawed clinical 
judgments or the exclusion of certain scenarios 
[19].

Second, on most occasions, AI technology 
could only calculate an outcome but is not able 
to trace the root cause. It seems that what AI 
probed is the surface of a huge iceberg, but the 
rest of it hides under the sea level. The prac-
tice of anesthesiology needs not only the high 
sense of accuracy but also detailed analysis 
of problems detected during surgeries, includ-
ing the original etiological factors, the whole 
process of pathophysiology, and at last, the 
optimum solutions to the problem. It may exist 
a circumstance that the machine obtains a cer-
tain outcome through the database construct-
ed by the clinical data all over the world, but 
it’s hard for the clinicians to determine whether 
the outcome is true or false according to his or 
her own clinical experience, let alone to analyze 
the etiological factors [7]. As discussed above, 
AI can predict hypotension and PONV, but it re-
mains confusing whether clinicians should car-
ry out measures to change the situation when 
the alarm is on. 

Additionally, systematical and united databases 
are waited to construct, while this contradicts 
personal privacy protection to some extent, 
which presents a large challenge in linking 
big biomedical data [95]. In the realm of AI 
applications, a pressing concern has been the 
ethical dilemmas previously identified in ex-
tant research. These encompass a spectrum 
of principles, including prudence, equity, pri-
vacy, responsibility, democratic participation, 
and solidarity [96]. For instance, AI algorithms 
exhibit formidable prowess in language and 
graphical processing, facilitating significant 
advancements in clinical robotics capable of 
interacting with patients. Nonetheless, trust 
remains a paramount issue, encroaching upon 
the patient-provider relationship and the in-
terface between patients and AI systems [97]. 
Another case in point is the globally captivating 
AI chatbot, ChatGPT, which generates convinc-
ingly coherent sentences by mimicking linguis-
tic statistical patterns gleaned from vast text 
databases culled from the internet. However, 
this convenience has been disruptive to vari-
ous domains, including academia, prompting 
numerous publishers to withhold recognition 
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of AI-generated manuscript editing. The impli-
cations of such developments are far-reaching 
and demand rigorous contemplation and regu-
latory oversight to navigate the complex ethical 
landscape of AI deployment [98].

Conclusions

In summary, although current AI technologies 
have their limitations, the potential of AI to 
tackle complex challenges and to rapidly illumi-
nate complex relationships is evident. This has 
led to its successful integration into periopera-
tive pain management, enhancing our under-
standing and paving the way for future develop-
ments. This review presents a curated forecast 
of future research directions in this domain.

Current literature highlights that existing mod-
els and algorithms often fall short due to low 
accuracy and insufficient reliability, usually 
stemming from single-center or retrospective 
observational design. Future endeavors may 
overcome these hurdles by continually refining 
algorithms to bolster clinical tools for periop-
erative pain management. As AI and pain 
management progress swiftly, current research 
predominantly focuses on integrating AI with 
mainstream pain management techniques, 
albeit with limited functionalities. The trend is 
shifting towards multifaceted pain manage-
ment strategies to optimize therapeutic out-
comes. AI’s potential role in the clinic is poised 
to evolve into a multifunctional entity, possibly 
encompassing pain assessment, treatment, 
and prediction of adverse effects in the future.

The future trajectory of each field is discussed, 
identifying potential opportunities to address 
current shortcomings. In pain assessment, re-
searchers may identify additional indicators to 
refine pain intensity measurements, with the 
advent of next-generation devices expected 
to offer real-time monitoring during surgeries. 
Pain treatment may see the development of 
AI-integrated devices that assist clinicians in 
drug selection and dosing. AI’s role in nerve 
block procedures could expand to ultrasound 
guidance, anatomical localization, and precise 
needle insertion. Predicting adverse effects 
could be enhanced with future techniques that 
provide comprehensive analyses and action-
able recommendations for practitioners. These 
envisioned advancements promise to refine the 
precision and effectiveness of pain manage-
ment in perioperative care, justifying further 
research to explore these promising avenues.
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