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Progress of Artificial Intelligence in anesthesia and perioperative

medicine

Abstract

Perioperative medicine is a series of medical activities throughout the perioperative period,
including preoperative optimization, intraoperative safety, postoperative rehabilitation, and
other activities. Anesthesia is closely integrated with perioperative medicine, and anesthesia
guarantees smooth operation, comfortable recovery, and long-term good outcome for patients.
There is a huge amount of clinical data in anesthesia and perioperative medicine. Because the
Artificial intelligence (Al)'s powerful ability of data analysis and evaluation, predicting data
based on real clinical big data analysis is a significant advantage of the application of Al in
anesthesia and perioperative medicine. Now Al has made some progress in the field of
anesthesiology and perioperative medicine. This review is divided into sections dealing with
most encountered computerized techniques of Al in anesthesiology, main clinical applications
themes of Al in anesthesiology which are divided by perioperative period, and limitations and
ethical implications involved in deployment of this technology. The aim of this review of the
intersection of Al and anesthesia research is to describe the current state of the research in the
field, to discuss the advantages and disadvantages of introducing Al into the medical field, to
explore the development direction of anesthesiologists in the future and to inspire scholars’
interest in this cross-cutting field.

Keywords: Anesthesia, artificial intelligence, machine leaming, perioperative medicine

1. Introduction

Artificial intelligence (Al) is defined as the broad concept of machines designed to imitate the
human way of thinking by building a model and finding some rules of the data on their own. The
various techniques of Al include machine learning (ML), deep learning (DL), and natural language
processing (NLP; Figure 1)'. In addition to the patient's health data, there are likewise substantial
perioperative monitoring data as anesthesia runs through the whole process of the perioperative
period, which creates opportunities for the application of Al in the field of anesthesia. Therefore,
the characteristics of anesthesiology as a data-intensive discipline make it most likely to benefit
from advances in A%,

1.1 Machine learning

ML is currently the most mainstream way to achieve artificial intelligence in which a computer
generates rules underlying by feeding the raw data and expected answers from the data. ML is
an appropriate method for anesthesiology, providing the capability to analyze plentiful clinic
data (e.g., BIS), discover associations, generate latent rules, and predict the outcome of
continuous leaming by computers which is strikingly similar to the doctor’s diagnostic process’.
Predicting the incidence of postoperative complications caused by clinical factors based on big

data analysis is a typical application of ML in anesthesia. According to the leaming manner, it




includes supervised learning, unsupervised learning, semi-supervised Leaming, and
reinforcement leaming.

@® Supervised learning is a process by which an algorithm is trained with the input eigenvalue
and the target value.

Decision tree model is a basic classification and regression method that presents a tree

structure and classifies instances based on input features.

The k-nearest neighbor (kNN) algorithm is another essential classification and regression
approach in which the category of each instance can be represented by the category of its
k nearest neighbors (e.g., based on Euclidian distance).

® Unsupervised leaming is a ML technique where a model is trained only with the input

eigenvalue without the target value.

® Semi-Supervised learning is a combination of supervised leaming and semi-supervised
learming where the model is trained with the input eigenvalue and part of the target value.

® Reinforcement learning refers to the process by which an algorithm(s) is ask to attempt a
certain task, and it will be given different rewards or punishments according to the effect
of completing the task, then the computer will automatically optimize a criterion based on

this reward and punishment, which is also a learning method used by AlphaGo.

1.2 Deep learning and neural network

DL is a subset of ML that utilizes multiple layers of connected neural networks, like the
human brain, to progressively extract higher-level features from the raw input’. The most
representative algorithms of deep learning networks are convolutional neural networks (CNNs),
which better designed process data with a grid-like structure, such as image data which can be
views as two-dimensional grid of pixels (Figure 2). Recurrent neural networks (RNNs) are
known as “memory” network of DL, which are sensitive to the sequence of the input. Therefore,
RNNSs are effective for mining temporal and semantic information from sequential data such as
speech®. The strength of DL over traditional ML is multi-layer mapping of neural networks can
automatically learn complex data features, which reduces the workload of feature engineering
by a human expert®. For example, CNNs are applied to predict difficult airway intubation based
on preoperative pictures of patients, with simple neuron level processing signal, and then
through the weight for parameterization of connections between neurons.

This review aims to identify techniques of Al that are being applied to anesthesia research and
describe the current state at the cross-disciplines of Al and anesthesia. A literature search was
conducted using the keywords “artificial intelligence, anesthesia, and perioperative period” in
the database of PubMed. This review is divided into sections dealing with most encountered
computerized techniques in anesthesiology, main clinical applications of Al in perioperative

anesthesiology, and limitations and ethical implications involved in deployment of AL




2. Al in pre-operative anesthesia

2.1 Preoperative risk prediction

Risk prediction is the most common Al application in preoperative assessment. Risk
stratification is the basis of anesthesia. However, traditional preoperative anesthesia
classifications are manually reviewed by clinicians, with certain subjective judgments and
limited granularity. Supervised ML methods, specifically random forest split classification,
have been tested to automatically generates an ASA PS with finer granularity’. This score of
preoperative patient acuity may be able to aid anesthesiologist in identifying at-risk patient.

Multiple systems, targeted preoperative risk prediction, have been proposed to ameliorate
existing scores such as ASA PS, even defined extra patient-specific risk scores. For example,
51457 patients with different types of major surgery were collected by a famous system called
“MySurgeryRisk™. For each patient, 285 preoperative parameters were selected and machine
learning was used to establish “MySurgeryRisk” Al system which generate the risk score.
Moreover, many scholars have optimized perioperative risk prediction with better algorithms
and superior performance. Similarly, Fritz B.A et al.” developed multipath CNN model from
the data of 95907 surgical patients. For each patient, 56 preoperative parameters were selected
to predict the risk of death at 30 days. This algorithm has been shown to have better performance
with higher AUC value when compared to that of CNN model, random forest model, support
vector machine, and logic regression algorithm.

2.2 Difficult intubation prediction

Difficult tracheal intubation is the main cause of anesthesia-related morbidity and mortality.
Although video laryngoscopy has been widely used in clinical practice, difficult intubation still
faces challenges. Preoperative airway assessment is an important part of perioperative
anesthetic management. Airway examination is another highly operator-dependent assessment.
Therefore, an objective method is needed to define the degree of airway difficulty. Hayasaka et
al.® developed a CNN algorithm capable of evaluating the difficult intubation with an area under
the curve (AUC) of 0.864 by evaluating patients’ facial pictures in the supine-side-closed
mouth-base position. Matava et al.” critically assess the current evidence on the use of artificial
intelligence and machine learning in the assessment, diagnosis, monitoring, procedure

assistance, and predicting outcomes during pediatric airway management.

In addition to Al face recognition analysis techniques that can be used to predict difficult

1 Preoperative clinical airway

intubation, acoustic features can also predict difficult intubation
assessment was performed, and acoustic data were collected of 225 patients who underwent
orthognathic surgery under tracheal intubation. Logistic regression analysis was performed to
examine the association between acoustic features and difficult laryngoscopy. The obtained
model identified the difficult intubation with an AUC of 0.724, an overall accuracy of 0.632,
specificity of 0.582, and sensitivity of 0.772. Acoustic feature shows the potential for predicting

difficult intubation among the patients under general anesthesia.




3. Alin intra-operative anesthesia

3.1 Intubation and extubation operation

Intubation is one of the most important anesthetic skills. In 2012, T.M. Hemmerling ef al. "'
developed a robotic intubation system (Kepler intubation system, KIS) for oral tracheal
intubation. In this operating system, doctors can remotely use a joystick to control a video
laryngoscope and safely insert an endotracheal tube into the patient's trachea. The success rate
was high at 91% for the first human testing of such a system. Although it was the first time to
validate and realize the possibility of remote control of tracheal intubation, the system did not
strictly reflect artificial intelligence. Moreover, the system could not quickly identify the trachea
to achieve tracheal navigation in difficult airway. In one patient of this study, fogging of the
video laryngoscope prevented intubation using KIS.

In the context of coronavirus disecase 2019 (COVID-19) pandemic, professor Lu Yi's
team developed a new tracheal intubation device based on magnetic navigation technology'>.
The new tracheal intubation device was designed by using external magnets to guide
corresponding magnets in the body to move towards a preset target area. The tracheal intubation
based on magnetic navigation technology is feasible, with high efficiency and easy operation.
This magnetic navigation tracheal intubation can successfully implement tracheal intubation,
and the time required is lower than that of traditional laryngoscopy, more importantly reduce

the risk of occupational exposure of medical staff.

Robotic endoscope-automated via laryngeal imaging for tracheal intubation (REALITI) has
been developed to enable automated tracheal intubation'®. The robotic device has real-time
image recognition and remote automatic positioning. The user can manually control the bending
movement of the endoscope tip, and when the image recognition detects the glottal opening,
the user can hold down a dedicated button to activate the automatic mode. In automatic mode,
the tip of the speculum moved toward the geometric center point of the glottal opening until it
entered the trachea. The first automated tracheal device insertion in a manikin has been
successfully performed with comparable results in a convenience sample of anaesthetists and
lay participants with no medical fraining. This study suggests that the time required for non-
trained participants to master the skill is similar to that of an experienced anesthesiologist,
which may help inexperienced health care workers to perform tracheal intubation. However, all
intubations were performed on the airway trainer mannequin but they are not yet in clinical
practice.

Early identification of critically ill patients who will require prolonged mechanical ventilation
(PMV) has proven to be difficult. Al can help quantify the risk of extubation to assist in
achieving individualized and accurate extubation. In a study, there were 20,262 total hospital
stays identified with mechanical ventilation from the Multiparameter Intelligent Monitoring in
Intensive Care III (MIMIC- III)'*. PMV was defined as mechanical ventilation for more than 7
d. Patients requiring tracheostomy placement were identified by the presence of ICD-9-CM
procedure codes (31.1, 31.29). Machine-learning classifiers were created using a gradient-

boosted decision trees algorithm for the outcomes of PMV and tracheostomy placement. It




showed that variables with the higher importance for predicting PMV and tracheostomy were
the logistic organ dysfunction score pulmonary component, the Sepsis-related organ failure
assessment (SOFA) score, cardiac arrhythmia, and the OASIS pre ICU length of stay (LOS).
The classifiers for these patients who were admitted to surgical ICU predicted PMV with an
AUC of 0.852, which can significantly reduce the probability of reintubation in patients.

3.2 Ultrasound-guided anesthetic techniques

For ultrasound-guided anesthetic techniques, artifacts, the noise, and anatomic structure
variability all affect the accuracy of nerve tracking and needle positioning. Al could be used to
assist with ultrasound-guided local anesthetic operations.

In nerve block anesthesia, the performance is different due to the location, image parameters
and patient specificity during the actual scanning. Compared with the traditional feature
extraction method, deep learning neural network is more stable and accurate. In 2013, the first
robotic system, Magellan', was invented to perform nerve blocks using a remote control center.
The researchers presented the first human testing of a robotic ultrasound-guided nerve block
system, and the success rate was 100%.

Right after that, to prove whether this newly invented system can shorten the operator learning
curve, Morse J et al. '“compared success rates, leaming curves, performance times, and inter-
subject performance variability of robot-assisted vs manual ultrasound (US)-guided nerve block
needle guidance. Linear regression indicated that the average shortening time between two
consecutive trials of robot-assisted nerve blocks 1.8 (1.6) seconds was significantly greater than
that of manual blocks 0.3 (0.3) seconds. Therefore, this robot allowed beginners to master the
operation skills faster and reduces the operator interval differences.

At present, epidural puncture needle placement is mainly manual operation, depending on the
hand feel, and the failure rate is very high. Moreover, improper placement of the epidural needle
can lead to inadequate anesthesia, post-puncture headaches and other potential complications.
Ultrasonography for neuraxial anesthesia is increasingly being used to identify spinal structures
and the identification of correct point of needle insertion to improve procedural success.
Pesteic et al.'’ used the hybrid machine learning system to automatically localize the needle
target for epidural needle placement and identify anatomical landmarks of epidural space in
ultrasound images. Compared with sonographers, the hybrid machine leaming system had a
transverse and longitudinal error of lmm and 0.4mm in the 3D-augmented test data plane,
which effectively reduced the error and improved the comfort and safety of patients.

Performing subarachnoid or epidural anesthesia in obese patients, especially in obese pregnant
women, remains a challenging task, with increased operational difficulty of determining the
needle insertion point because of spinal changes induced by obesity and pregnancy. Acting on
ultrasound imaging of the lumbar spine, a program based on ML algorithms was developed to
automatically identify the needle insertion site'®. The first attempt success rate for spinal
anesthesia was 79.1%, which showed that the automated spinal landmark identification

program is able to provide assistance to needle insertion point identification in obese patients.




For practicing UGRA, the tracking of the nerve structure in ultrasound images even for
experienced operators is kind of capacity-testing, extremely labor intensive, due to the noise
and other artifacts. By using additional information to track nerves and blood vessels, a
detection and tracking framework is used in combination with a robotic system to assist in the
UGRA. A new and robust tracking technique by using Adaptive Median Binary Pattern (AMBP)
was introduced as texture feature for tracking algorithms'®. This fully automatic nerve tracking
method in Ultrasound images achieved best performance with 95% accuracy when it was

applied on real data and evaluated in different situations.

Studies of stroke require the acquisition of patient-specific geometry of the carotid artery
bifurcation. Although C-mode computed tomography (CT) and magnetic resonance (MR) are
effective tests, there are many limitations including but not limited to ionizing radiation,
unaffordable expense, and not available for all patients. Ruijter J et a/.>* developed an automatic
3D geometry segmentation algorithm for ultrasound images using a 2D US probe. This
algorithm is able to segment the common carotid artery (CCA), the internal carotid artery (ICA),
and the external carotid artery (ECA) including the carotid bifurcation in transverse B-mode
images in both healthy and diseased arteries. The success rate was 89% where this method was

tested on 19 healthy volunteers and on 3 patients.

3.3 Depth of anesthesia monitoring

Bispectral index (BIS) and electroencephalogram (EEG) characteristic parameters are usually
used to evaluate depth of anesthesia (DoA). However, in anesthesia monitoring, the reliability
of the BIS can be affected by numerous other interferences, such as the patient's own factors
(basic diseases, etc.), the combination of different anesthetics, muscle relaxants, intraoperative
electric coagulation, etc?’. Al could be used to improve depth of anesthesia (DoA) monitoring.
Yu et al.? proposed an adaptive control scheme that combines BIS and blood pressure to ensure
the correct amount of target setting point and drug in the body even if BIS signal is lost

intermittently.

ML methods have testified to his competence of processing complex data streams such as EEG.
Therefore, a range of EEG-based signals that indicates states of the brain have been analyzed
by ML approaches to accurately scale the DoA. In Gu’s research, an algorithm based on
artificial neural networks (ANNs) and EEG to evaluate DoA was presented. The output results
of this algorithm clearly demonstrated a strong linear correlation with BISZ.

Moreover, machine learning is used to distinguish states of consciousness based on EEG*.
Three sedation situation was studied with dexmedetomidine i.v., propofol i.v., or natural sleep
in this research. Distinct source localised signatures of sensory disconnection and
unconsciousness were identified using support vector machine classification. It indicated that
occipital delta power differentiated disconnected and unconscious states for dexmedetomidine
but not for sleep/propofol. These findings may enable novel monitors of the anaesthetic state
that can distinguish sensory disconnection and unconsciousness, and these may provide novel
insights into the biology of arousal.




With the deepening of DoA investigation, attention has been gradually paid to other clinical
signals as well, for example, mid-latency auditory evoked potentials, end-tidal carbon dioxide,

blood pressure, and heart rate™ >,

3.4 Intraoperative hypotension and hypoxemia prediction

Intraoperative monitoring of adverse events, such as intraoperative hypotension, which is
typically common, is a crucial period of anesthesia execution. Early prediction of adverse
events allows physicians to take timely action to significantly reduce patient morbidity and
mortality. As mentioned earlier, due to the datafication of clinical information, real analysis
based on big data is the advantage of Al applied to predict patterns of intraoperative blood
pressure.”” A model for predicting hypotension based on ML methods analysis of arterial
pressure waveforms was established by Hatib F et al.*®. In this real-time dynamic prediction
system, the evolution of mean arterial pressure (MAP), the time-to-event interval, is highly
consistent with the hypotension prediction index (HPI, the algorithm output).*®

Similarly, there is a lack of reliable indicators for the prevention of intraoperative hypoxemia.
A system, based on ML, was developed to assist anesthesiologist in predicting the occurrence
of hypoxemia during anesthesia and delineate the risk factors that contributed to the prediction

by visually presenting a weighted function model.>’

3.5 Closed loop anesthesia control system

In the ficld of anesthesiology, how to achieve perioperative precise drug delivery and reduce
the workload of anesthesiologists has always been concerned. Therefore, drug delivery robots
have been rapidly developed and widely used in clinical practice. These major advances in
anesthesia delivery control system have been summarized in Tables 1.

In 2016, an intravenous anesthesia robot developed by a Beijing company was successfully
tested for the first time in Beijing. The system is mainly through continuous monitoring of the
depth of sedation, pain index, muscle relaxation, blood flow and other parameters, and then
remote control through cloud computing, feedback regulation of drug delivery speed, to
automatically complete general anesthesia. At present, the system is in the stage of clinical
testing, which opens a precedent for the application of Multiple Input Multiple Output (MIMO)

systems>”.

Pattern recognition capabilities of neural networks (NNs) make it possible in automatically
classifying breath failures. The performance of many studies related to intelligent anesthesia
alarm systems have shown that neural networks have been the technical comerstone in this
field®'. In 1994, Orr JA et al.*? installed sensors at designated locations to measure respiratory
signals such as pressure, flow, and carbon dioxide. 30 descriptive features was extracted for
each breath circuit from the breathing signals mentioned above. A neural network system was
trained to identify 13 faults. In animal tests, the system detected the problems and reported
corrected messages for 95.0% and 86.9% of the failures in controlled and spontaneous
respiration, respectively.




Similarly, a hierarchical artificial neural network monitor was developed by Narus SP et al.*®
to identify 23 faults in 92% of cases and 21 faults in 83% of cases during controlled and
spontaneous breathing, respectively. These days, ANN has been proved be useful in creating
intelligent anesthesia alarm systems and already applied to some high-end ventilators or
anesthesia machines.

In recent years, closed-loop systems are not limited to anesthesia, sedation, analgesia, muscle
relaxation, etc. In order to further explore the clinical value of closed-loop systems, researchers
have also developed closed-loop systems for perioperative fluid infusion and vasoactive drug
management. In the treatment of acute respiratory distress syndrome (AR DS) patients, Positive
End Expiratory Pressure (PEEP) is one of the important parameters following the principles of
the open lung concept (OLC)**. Application of PEEP can reinflate collapsed alveoli and
increase arterial oxygen content, but too high PEEP can lead to hemodynamic instability and
reduce oxygen delivery. Artificial intelligence can be used to develop an automatic control
system for mechanical ventilation therapy based on the open lung concept (OLC). This
innovative closed-loop mechanical ventilation system intelligently regulates Intraoperative
PEEP, end-tidal carbon dioxide and other parameters as well as the use of vasoactive drugs,
leads to a significant improvement in oxygenation. The experiment with porcine dynamics
demonstrates the feasibility and usefulness of this automatic closed-loop ventilation therapy,
with hemodynamic control for severe ARDS.

4. Al in post-operative anesthesia

4.1 Pain medicine

In the field of pain medicine, the use of pain questionnaires is subjective and limited. Thanks
to its huge data and complex analyzes, Al is tuming out to be valuable. Hu X et al.** presented
an innovative and feasible neuroimaging-based Augmented Reality/Artificial Intelligence
(AR/AI) concept that can potentially transform the human brain into an objective target to
visualize and precisely measure and localize pain in real time. In this study, the neutral network
(NN) with 3 layers achieved an optimal classification accuracy at 80.37% for pain and no pain
discrimination, and NN with 6 layers achieved highest classification accuracy at 74.23% for
localizing 3 classes of left side pain, right side pain and no-pain states®.

4.2 Postoperative complication prediction

As described above about preoperative risk prediction, intraoperative hypotension prediction
and intraoperative hypoxemia prediction, postoperative adverse events for hospitalized patients
can be better predict.

4.2.1 Postoperative in-hospital mortality prediction

Post anesthesia care unit (PACU) evaluation to be performed is the assessment of post-surgical
in-hospital mortality. In this context Lee et al. * have developed a generalized additive model
with neural networks (GAM-NNs). It turns out that in terms of performance, it shows a high
AUC in predicting mortality in patients with general anesthesia. [t has many advantages over
simple models such as LR used in previous studies. For example, it can work on nonlinear data,

and it has better transparency and higher accuracy with a notable AUC of 0.921.




4.2.2 Perioperative deep venous thrombosis prediction

The formation of deep venous thrombosis (DVT) is an extremely complex pathological process

and studies have shown that it is closely related to numerous patient's basic health data and

surgical factors”’. Any single factor is not enough to directly lead to the occurrence of DVT, so

predicting DVT based on one or several variables is bound to increase the rate of missed

diagnosis®’. A patient-specific decision system, which had its origin from 35,963 total hip (THA)
and knee arthroplasty (TKA) patients, was created to predict the incidence of deep vein

thrombosis (DVT), pulmonary emboli (PE) and major bleeding (MBE) after being operated™®.

5. Summary and future directions

The application of Al in medicine is aimed at solving patients' health problems, which is the
most original and radical purpose, and has grown rapidly recently. Al is a potentially powerful
tool, but it comes with multiple challenges®’. One objection is that Al, especially neural
networks, leads to the black box problem. The physician can provide the input and get the
prediction (output) through an algorithmic model, but cannot examine the logic that produced
the decision. In other words, the model cannot give extra details to explain how it works and
why the output is produced’. Therefore, people pay attention to transparency and
interpretability of the Al algorithms. For example, decision tree is an easy to understand and
interpretable model, because it not only gives the prediction of the input data, but also provides
a series of intermediate decisions that lead to the final prediction, which the researcher can
verify or question. However, the accuracy of decision tree prediction is lagging behind that of
neural network. Therefore, combining neural networks with decision trees is a feasible direction

to improve their interpretability and maintain their accuracy.

Secondly, Al algorithms are susceptible to bias in data. Whether human biases will be coded
explicitly or implicitly into the algorithm like similar racial biases. People generally believe
that ML algorithms, without judgments of human, is free of bias, but in fact bias is horrendously
integrated into sample data. The main cause of ML data bias is the lack of diversity of data

samples*

. Data from a single source may lead to erroneous conclusions.

The promise of a fiduciary relationship between patients and doctors becomes unclear with Al
involved*. At present, with the introduction of A, there are no laws and regulations to clarify
the fiduciary compact. Who is responsible for the errors that Al uses to diagnose? Is the

responsibility for determining treatment still with the physician?

Doctors traditionally protect patient privacy, but Al requires all aspects of the patient's data,
because patients without data cannot benefit from the algorithm. The implementation of AT will
therefore require a reimagining of confidentiality and other core tenets of professional ethics*'.
At the intersection of Al and medicine, a strong regulatory body is urgently needed to weigh all
the elements of data ethics management’.The use of scientific regulatory concepts has the
potential to foster a deep integration between Al the medical field, and regulators*>.

Will the anesthetists be replaced by Al and lose their jobs and have to deliver food**? Maybe in




the future, but not yet. Now we are in the “weak AI"* stage, it usually achieves good results in
a specific domain, but it is not as universal as people. For example, AlphaGo can only be used
in Go, not in chess or military chess. Similarly, the model developed by Lee et al.*'seems be
incapable of predicting outcomes if we double the dose of either propofol or remifentanil.
Because the training data did not include this case when the neural network was trained.

From the perspective of our ordinary people's medical treatment, now Al has invisibly covered
various scenes in the medical process. Admittedly, Al is technologically superior to humans in
integrating complex, large, structured data sets. But most of the data that doctors collect is based
on a trusted doctor-patient relationship, where patients trust their doctors rather than AL
Therefore, physicians should not only make full use of the powerful deep learning ability of Al,
but also give full play to the advantages of humans and strive to complement each other between
humans and computers,
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