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Abstract

Medical ultrasound imaging is an integral part of preoperative diagnosis, lesion screening and ultrasound-guided 
interventional surgeries. Image segmentation techniques can enhance the identification of lesions and separate 
them from complex backgrounds, aiding physicians in both quantitative and qualitative analyses. Ultrasound im-
age segmentation algorithms are primarily categorized into two types: traditional non-semantic segmentation and 
deep learning-based semantic segmentation, each with distinct advantages and drawbacks. This paper delves 
into these segmentation principles, elucidating their relevance in the realm of ultrasound image segmentation, 
and offers an overview of current research trends. Our goal is to provide guidance for physicians and researchers 
in selecting the most suitable segmentation algorithm that tailors to their specific requirements.
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Introduction

Ultrasound has emerged as a pivotal modality 
in contemporary medicine due to its efficacy 
in imaging sof t and muscular tissues. It 
has the advantages of rapid imaging, cost-
effectiveness, absence of radiation, and real-
time visualization of soft tissue structures 
compared to X-ray. Previously, mammography 
was the most effective tool for early detection 
of breast cancer, but it has obvious limitations, 
leading to misdiagnosis and many unnecessary 
b iops ies  (65 -85%) ,  as  we l l  as  missed 
diagnoses, where 10-30% breast cancers 
were not detected in time [1-3]. Therefore, 
ultrasound imaging has become an important 
alternative to mammography. Research has 
shown that over one fourth of studies utilized 
ultrasound images, with the ratio growing at 

an accelerated rate [4]. Evidence suggests 
that ultrasound images are ef fective in 
differentiating benign from malignant tumors 
with high accuracy [5]. Additionally, they 
enhance the cancer detection rate by 17% and 
reduce unnecessary biopsies by 40% [6, 7]. 

However, ultrasound image interpretation 
requi res  wel l - t ra ined and exper ienced 
radiologists. Even well-trained experts may 
have a high inter-observer variation rate. In 
recent years, computer-aided diagnosis has 
made great strides driven by advancements 
in computer technology, encompassing both 
computer vision and artificial intelligence [8]. 
Through computer-aided diagnosis, it is feasible 
to differentiate between benign and malignant 
breast tumors by analyzing their boundaries 
and morphology [9]. Moreover, segmentation 

Hightlight
● Medical image segmentation algorithms play a crucial role in diagnosing and screening lesions. 
● Appropriate segmentation techniques are conducive to reducing the workload of doctors and hold significant 
  im plications for clinical auxiliary treatment.
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algorithms play a crucial role in identifying 
needle tips in ultrasound images, potentially 
reducing and compensating for surgeon fatigue 
during minimally invasive procedures [10].

Despite the advantages, ultrasound imaging 
also comes with challenges, namely limited 
resolution, ambiguous lesion boundaries, and 
the presence of speckle noise, all of which 
complicate accurate lesion segmentation. 
T h e r e fo r e ,  a c c u r a te  s e g m e n t a t i o n  o f 
lesions within ultrasound images remains a 
pressing challenge. While numerous image 
segmentation algorithms exist, this paper 
delves into the diverse domains of current 
ultrasound image segmentation algorithms and 
their applications. Furthermore, a summary and 
future outlook are provided, aiming to serve 
as a reference for researchers and medical 
practitioners.

Methods

Non-Semantic Ultrasound Image Segmentation

Traditional image segmentation algorithms rely 
on fundamental features, such as color and 
texture, to segment desired objects or regions. 
Owing to their high computational efficiency 
and consistent performance, these techniques 
have emerged as predominant in image 
segmentation applications. Notably, techniques 
rooted in edge detection, regional attributes 
and deformation models are commonly 
employed.

Edge-Based Ultrasound Image Segmentation

Edge-based image segmentation algorithms 
identify edges by analyzing the distinctiveness 
of pixels across different regions, primarily 
using threshold segmentation and differential 
operators.

Threshold segmentation stands out due to its 
ubiquitous applicability and foundational prin-
ciple: discernible grey-scale disparities exist 

between foreground and background regions, 
which allows for the determination of a suitable 
threshold, T, differentiating the foreground from 
the background, as shown in Figure 1 [11]. The 
Otsu method optimizes segmentation by select-
ing a threshold, T, that maximizes or minimizes 
the interclass variance across distinct regions 
[12]. An enhancement to the Otsu algorithm, 
as detailed by Hui-Fuang Ng, ensures that the 
threshold, T, aligns optimally with the valley 
of variance [13]. In ultrasound image, lesions 
exhibit a notably denser grey value distribution. 
The maximum entropy thresholding algorithm 
exploits this density, calculating the  infor-
mation entropy of image to pinpoint the ideal 
threshold, T, at the position of maximum entro-
py [14].

Local differential operators, including the La-
placian, Sobel, and Canny operators, facilitate 
edge detection for image segmentation [15, 
16]. As shown in Figure 2, these operators op-
erate on the premise that first-order derivatives 
present extreme values at greyscale transitions, 
while second-order derivatives manifest non-ze-
ro points. However, in ultrasound image, the 
inherent discontinuity and high-frequency noise 
complicate lesion edge identification when 
relying solely on differential operators. To ad-
dress these challenges, several enhancements 
have been proposed. For instance, researchers 
have utilized the nonlinear Laplacian operator 
to identify pixels associated with second-order 
derivative changes and augmented edge pixel 
definition for better segmentation [17]. Addi-
tionally, Fan et al. introduced nonlinear wave-
lets for segmenting the inner and outer bound-
aries of tubular artery ultrasound images [18].

Region-Based Ultrasound Image Segmentation
 

As shown in Figure 3, region-based algorithms 
offer a method for image segmentation, encom-
passing both the region growth and watershed 
algorithms. These algorithms segment images 
based on internal region similarity. Specifically, 
the region-growing algorithm identifies seed 

Figure 1. Basic flowchart of threshold segmentation.

Figure 2. Basic flowchart of edge segmentation using differential operator.
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pixels through a defined growth criterion. It 
then amalgamates pixels sharing similar char-
acteristics across disparate regions, forming 
distinct regions for ultrasound image segmen-
tation [19]. Fan et al. introduced a method that 
incorporates two constraints to autonomously 
identify seed pixels within breast tumor lesions 
[20]. This method innovatively merges iterative 
quadrinomial tree decomposition with grey-
scale values, thereby enhancing the segmenta-
tion of ultrasound image lesions.

As shown in Figure 4, the watershed algorithm, 
commonly referred to as watershed segmen-
tation, interprets the grayscale of an image as 
analogous to the topographical features of the 
surface of earth, with the grayscale values rep-

resenting a third-dimensional elevation 
perspective [21]. Though prevalently 
employed in pattern recognition and 
medical imaging, the watershed meth-
od frequently suffers from over-seg-
mentation. To counteract this, Weickert 
et al. introduced a region-merging 
approach as an enhancement [22]. 
Additionally, the challenge of over-seg-
mentation was tackled by Jung et al. 
through an integration of the water-
shed algorithm with wavelet transform 
[23]. Further, Gomez et al. applied the 
watershed algorithm to segment breast 
ultrasound images by using constraints 
on the textural features derived from 
the Gabor filter [24]. 

Deformation Model-Based Ultrasound 
Image Segmentation

The concept of deformation model 
draws inspiration from physics and 
geometric theories. This model assimi-
lates relevant grayscale and texture in-
formation from image data to segment 
targets following predefined criteria, as 
shown in Figure 5.

The act ive contour model ,  of ten 
referred to as the snake model , 
provides a robust f ramework for 

delineating the contour of an image target 
through the minimization or maximization 
of an energy functional [25]. The curve 
evolution process of this model autonomously 
determinate the interior of the curve and 
maintains its smooth transition. An external 
force guides the curve towards the boundaries 
of the region of interest (ROI), as influenced by 
the image’s constraints and potential energy.

The region-based active contour C-V (Chan-
Vese) model was proposed by Wang et al. 
[26]. The C-V model proposed by Hmida et al. 
incorporates a new segmentation algorithm 
to obtain a model that depicts the contour 
of the mass [27]. Specifically, Kuo et al. 
segmented breast ultrasound images using 
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Figure.3 Region growing algorithm.

Figure 4. Watershed algorithm.

Figure 5. Basic flowchart of deformation model segmentation.
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radial gradient index contour [28]. Gu et al. 
proposed an improved approach based on 
the aforementioned algorithm by providing 
an edge-based deformation model [29]. To 
accurately track the local changes in grayscale 
in the ultrasound image, Li et al. utilized the 
local attribute of the kernel function, based 
on the region-scalable fitting (RSF) method 
[30]. This algorithm is highly effective in 
segmenting images with uneven grayscale 
distributions. Moreover, an active contour 
model based on Bhattacharyya gradient 
flow (BGF) was proposed to treat the target 
area and background area of images as 
different samples [31]. To achieve the goal 
of image segmentation without depending 
on the uniformity information of the super-
grayscale image, the issue is transformed into 
a probabilistic model problem by computing 
the Babbitt distance between the two sample 
distributions. Yuan et al. proposed a model 
called RSFB that combines the benefits of the 
RSF model and the BGF model to solve the 
problem of uneven gray levels and blurring 
borders in ultrasound images [32].

Deep Learning-Based Ultrasound Image 
Segmentation

Convolutional neural networks (CNNs) are 
a special ized category in deep learning 
architectures designed to process structured 
grid data, such as images [33]. A typical CNN 
comprises convolutional layers, pooling layers, 
and fully connected layers. This design equips 
CNNs with robust feature extraction and data 
abstraction capabilities. Instead of relying on 
handcrafted features, CNNs can automatically 
recognize correlations between inputs and 
outputs through adaptive learning, making 

them particularly suitable for tasks such as 
image segmentation and classification.

U-Shaped and Its Derivative Networks

U-Net represents a pivotal advancement in 
medical image segmentation and continues 
to be a prominent semantic segmentation al-
gorithm, as shown in Figure 6 [34]. Within its 
architecture, the shallow convolutional layers 
predominantly capture spatial and textural nu-
ances due to their limited receptive field and 
high-resolution capacity. In contrast, the deep 
convolutional layers can discern broader se-
mantic features, facilitated by an expansive re-
ceptive field and lower resolution. Distinctively, 
U-Net exhibits a symmetrical encoder-decoder 
configuration, fostering an integration between 
shallow and deep feature representations. 
This architectural nuance equips U-Net with 
the capability to concurrently process both tex-
ture-oriented features and high-level semantic 
features, thereby augmenting its receptive field 
and enhancing segmentation precision. 

Various enhancements have been proposed 
to bolster the original U-Net architecture. 
The recurrent residual U-Net addresses the 
degradation in segmentation results that 
attributed to gradient explosion or vanishing, 
particularly as the network deepens [35]. 
Furthermore, the adoption of Prelu as an 
activation function has been suggested to 
optimize the network’s performance. Karthik 
et al. introduced a multi-level U-Net, which is 
capable of real-time segmentation of breast 
masses in ultrasound images [36]. U-Net++ 
innovatively incorporates a dense connection 
between each convolutional layer, performing 
upsampling and feature fusion on the encoder-

Figure 6. U-Net model.
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generated feature map to bridge the disparity 
between the encoder and the decoder [37, 
38]. In a different approach, residual U-Net  
employs the residual network as its backbone, 
enhancing the convolution module traditionally 
used in U-Net [39, 40]. Building upon this, 
ResUNet++  in teg ra tes  a  squeeze  and 
extraction block to emphasize pivotal channels 
within the network, consequently suppressing 
less significant ones [41, 42]. Furthermore, 
the SK-U-Net approach refines the ROI of 
network towards the lesion using channel 
attention, resulting in the SK module delivering 
superior segmentation outcomes during the 
segmentation of lesions in ultrasound breast 
images [43].

Advancements in U-Net data processing 
techniques are well documented, with a 
specific emphasis on data augmentation 
strategies. Zeiser et al. detailed an approach 
that enhances data through techniques such 
as contrast enhancement and flipping, while 
concurrently removing extraneous information 
from images by using U-Net [44]. In the more 
recent development, nnU-Net accentuates the 
significance of data augmentation [45]. Rather 
than primarily focusing on the model, nnU-
Net is dedicated to understand how varying 
segmentation tasks influence the final resulting 
segmentation. Consequently, nnUnet prioritizes 
data pre-processing, post-processing, and 
tailoring hyperparameter settings to cater 
to specific models for different tasks. This 
comprehensive approach aims to elevate both 
the efficiency and accuracy of segmentation 
tasks. Presently, the segmentation outcomes 
from nnUnet have become a benchmark for 
evaluating novel segmentation models.

Lightweight Networks

Fully convolutional network (FCN) represents 

a paradigm shift in image segmentation, 
notably decreasing computational demands by 
substituting the fully connected layers found in 
traditional CNNs with convolutional layers [46]. 
In SegNet, the deconvolution inherent to FCN is 
superseded by upsampling through nonlinear 
interpolation, further mitigating computational 
demands [47]. However, the existing parameter-
intensive nature of these models constrains 
their applicability for real-time processing 
in scenarios like clinical surgeries or mobile 
ultrasound-embedded devices.

In this context, Hu et al. reported an efficacious 
application of BiSeNet for segmenting pedi-
atric ultrasound images of the left and right 
ventricles, demonstrating superior speed and 
accuracy relative to U-Net [48, 49]. BiSeNet 
introduces a bidirectional segmentation frame-
work that coordinates two pathways: the spatial 
path  and the context path  as shown in Figure 
7. The spatial path (SP) emphasizes the preser-
vation of spatially rich feature maps, while the 
context path rapidly downsamples to assimilate 
high-level semantic information, culminating in 
an expansive perceptual field via global aver-
age pooling. 

BiSeNet V2 refines this framework through 
incorporating a guided aggregation layer to 
bolster the synergy of spatial and semantic 
features [50]. Additionally, it enriches both 
spatial and semantic branches, interweaving 
an attention mechanism to amplify speed and 
precision. An insightful deviation is presented 
in “Rethinking BiseNet” where the short-
term dense concatenate (STDC) module is 
posited as the backbone network, replacing 
the classification-centric backbone of BiSeNet 
[51]. This architectural shift, enabled by the 
STDC module, markedly amplifies network 
performance, granting an expansive receptive 
field with a constrained parameter set.

Applications in Ultrasound Image Segmen-
tation

Image Segmentation in Coronary Artery 
Disease

Vascular ultrasound is instrumental in the 
management of coronary artery disease. Its 
utility extends from the detailed delineation 
of coronary artery anatomy, providing critical 
guidance in the selection and evaluation of 
interventional strategies. The imaging modality 
offers an intricate view of blood vessel and 
tissue morphology, allowing clear visualization 
of structures beneath the intima and accurate 

Figure 7. The spatial path and context path of 
BiSeNet .
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measurements of vascular lumen diameters. 
Given its diagnostic accuracy, segmentation 
of vascular tissue structures is of paramount 
importance.

Sonka et al. employed the snake algorithm for 
coronary artery segmentation, incorporating 
prior knowledge of vessel cross-sections 
d u r i n g  m o d e l  d e fo r m a t i o n  [ 5 2 ] .  T h i s 
knowledge encompasses target  edges, 
shapes, edge orientations, and vessel wall 
thickness, reflecting manual segmentation 
procedures. In the study of Bouma et al., a 
lumen segmentation algorithm was proposed, 
combining a suite of filtering techniques: 
Gaussian, median, and anisotropic filters 
[53]. Coupled with distinct segmentation 
methodologies, including the threshold, 
region expansion, and discrete active contour 
methods, the algorithm’s performance was 
evaluated by exper ts [54].  However,  i ts 
efficacy is compromised in the presence 
of s ignif icant image noise,  result ing in 
suboptimal segmentation outcomes relative 
to expert-driven benchmarks. Pardo et al. 
introduced a statistical deformation model 
tailored for coronary artery segmentation 
by using a derived Gaussian filter for local 
edge delineation in varying directions [55]. 
This approach contrasts image features 
with established knowledge, guiding the 
deformation using linear discriminant analysis. 
This optimization streamlines the feature space 
and enhances the robustness of the model.

Yang et al. introduced an innovative approach 
dubbed “ IVUS-Net”  for  coronar y  ar ter y 
segmentation using deep learning [56]. The 
network is rooted in the FCN architecture and 
employs an aggregated multi-branch structure, 
integrating features from both U-Net and 
SegNet in a symmetric layout. The encoding 
segment comprises four distinct modules, 
while the decoding segment consists of three. 
Crucially, skip connections are employed 
to furnish the decoder with supplementary 
information. Post-segmentation, an elliptical 
contour fitting process further refines the result. 
Compared to conventional methods, IVUS-Net 
notably enhances segmentation accuracy.

Breast Ultrasound Image Segmentation

The abundant adipose tissue in breast causes 
over-segmentation, unclear lesion borders, low 
contrast, and increased shadows. As a solution 
to these issues, a three-step method for breast 
mass segmentation based on superpixel 
creation and curve development was proposed 

[57]. This method is based on the creation of 
superpixels and curve development, utilizing 
the simple linear iterative clustering (SLIC) 
method and density-based spatial clustering 
of applications with noise (DBSCAN) for breast 
mass detection and generating mammogram 
superpixels. Subsequently, ROI in breast 
masses are constructed, followed by a fitting 
approach based on local Gaussian distribution 
(LGD) to capture the edge of the breast tumor 
through graphic block processing and spatial 
constraints. This method effectively eliminates 
the false positive region of the ROI and provides 
improved segmentation results by capturing the 
margin of the breast tumor more accurately.

Wang et al. proposed a novel solution to the 
complex issue of detecting malignancies in 
breast ultrasound images: the multi-level 
nested pyramid network (MNPNet) [58]. The 
center of MNPNet’s design is an encoder 
module that integrates both ResNet34 and 
atrous spatial pyramid pooling (ASPP) modules. 
This configuration ensures efficient encoding of 
context features from multiple levels, capturing 
both low-level details and high-level semantic 
information. On the other hand, the decoder 
module uses bilinear upsampling and a feature 
fusion technique, enhancing the segmentation 
precision of tumor border regions. Collectively, 
the MNPNet framework outperforms other 
methods in breast imaging analysis and holds 
promise for improving diagnostic accuracy in 
clinical practice.

Ultrasound-Guided Interventional Surgery

Ultrasound-guided minimally invasive surgery 
employs specialized puncture needles to 
access lesions through the skin, facilitating 
procedures l ike radiofrequency thermal 
ablation and needle puncture biopsy [59, 60]. 
This technique allows for localized treatment 
and minimally invasive surgical intervention 
on tumor lesions. Notable benefits include 
the absence of radiation exposure, rapid 
recovery, and cost-effectiveness. However, 
inherent challenges of original ultrasound 
images, such as low resolution, high noise, and 
difficulty pinpointing lesion locations, still exist. 
Consequently, during surgery, physicians must 
continuously monitor the position of the tip of 
the puncture needle, which is critical to the 
success of the operation. Thus, compared to 
other surgical procedures, ultrasound-guided 
minimally invasive surgery tends to be more 
reliant on the surgeon’s experience.

To accurately pinpoint the position of the 
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puncture needle in real-time during surgery, 
Mwikirize et al. broke the process down into 
three stages [61]. First, the movement of the 
needle tip was identified and amplified within 
the ultrasound image, keeping the needle tip 
component in the foreground and relegating the 
rest to the background. Second, a regularization 
filter was deployed to further emphasize the 
tip and extracted its form features. Finally, 
the modified Yolo network architecture was 
utilized to localize the needle tip within the 
original ultrasound image [62]. On the other 
hand, Mwikirize recommended classifying the 
needle tip before any augmentation [63]. If 
there’s spatial movement, the tip is enhanced; 
otherwise, it remains untouched. This selective 
approach avoids enhancing every frame, 

thereby reducing computational demands and 
accelerating the process.

Summary and outlook

Summary

This paper provides an overview of several 
ultrasound image segmentation algorithms 
employed in the realm of medical ultrasound, 
highlighting their evolution alongside advances 
in computer technology. Each algorithm 
presents its own strengths and weaknesses.

The traditional non-semantic image segmenta-
tion algorithm is both straightforward and swift. 
The main traditional non-semantic segmen-

Table 1. Summary of traditional non-semantic segmentation algorithms
Algorithm reference Algorithm type Algorithm overview

Ng H-F. 2006 [13] Threshold segmentation algorithm
Identifying an appropriate threshold value, 
T, where inter-class variance between 
regions is maximized or minimized.

Kapur JN et al. 1988 [15] Threshold segmentation algorithm Utilizing the maximum entropy threshold 
segmentation algorithm.

Aarnink R et al. 1994 [17] Edge detection segmentation algorithm
Segmenting edge pixels using the 
nonlinear Laplacian operator for second-
order derivative boundaries.

Fan L et al. 1996 [18] Edge detection segmentation algorithm Segmenting edge pixels using nonlinear 
wavelet detection.

Fan H et al. 2019 [20] Region segmentation algorithm

Using iterative quadrinomial tree 
decomposition with grayscale features 
to establish two constraint conditions for 
automatic seed pixel identification.

Gomez W et al. 2010 [24] Region segmentation algorithm

Using texture features generated by 
Gaussian-constrained Gabor filters 
combined with the Watershed algorithm 
for segmentation.

Kuo H-C et al. 2013 [28] Deformable model Contour segmentation using the Radial 
Gradient Index.

Yuan J. 2012 [32] Deformable model
Introducing the SFB model, merging 
RSF and BGF benefits, to tackle uneven 
grayscale and blurriness

Table 2. Summary of deep learning semantic segmentation algorithms
Algorithm reference Algorithm type Algorithm overview

Ronneberger O et al. 2015 [34] U-Net model Symmetrical U-shape with skip connections merging 
shallow and deep features

Zhou Z et al. 2018 [37] U-Net model Added dense connections between convolutional 
layers.

Zhang Z et al. 2018 [39] U-Net model Backbone replaced with Residual Network

Isensee F et al. 2021 [45] U-Net model Emphasizes data pre/post-processing and task-
specific hyperparameter tuning

Badrinarayanan V et al. 2017 [47] Lightweight network Upsample with nonlinear interpolation, reducing 
computations.

Yu C et al. 2018 [49] Lightweight network Bidirectional segmentation for space info retention 
and wider receptive field.

Yu C et al. 2021 [50] Lightweight network Enhanced spatial and semantic branches with 
attention mechanism.
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tation algorithms are shown in Table 1. They 
perform effectively on individual images where 
there’s a pronounced contrast between the 
lesion and the surrounding regions. However, 
these traditional methods struggle to process 
ultrasound images with complex composition 
and high noise, posing challenges like unclear 
border segmentation.

T h e  d e fo r m a t i o n  m o d e l  i mp rove s  t h e 
accuracy of ultrasound image segmentation. 
Nevertheless, it comes with its own drawbacks, 
such as intricate computations, inability 
to achieve automatic segmentation, and 
imprecise boundary tracking.

Deep learning-based segmentation stands out 
for its superior quality and speed. The main 
deep learning semantic segmentation algo-
rithms are shown in Table 2. By using a light-
weight network, it can achieve fully automated 
segmentation in real-time. The main challenge 
here lies in the initial phase: a substantial 
amount of manually labeled data are essential 
for training the neural network.

Outlook

Effective ultrasound image segmentation 
aims to improve automated segmentation 
performance, enhance segmentation accuracy, 
and reduce computational demands. While 
critical to the creation and analysis of medical 
images, this process faces multiple challenges. 
Conventional algorithms and deformation 
models often fall short in delivering high-
precision segmentation for ultrasound images. 
Furthermore, the extensive application of deep 
learning is hindered by the limited availability 
of medical image data. Additionally, it is also 
challenging to ideally balance the speed and 
accuracy for real-time segmentation, limiting its 
clinical application.

Looking ahead, i t ’s  imperat ive to meld 
medical knowledge with image segmentation 
algorithms. Integrating traditional segmentation 
techniques with deep learning algorithms can 
be the linchpin for elevating clinical diagnosis 
efficacy. To counteract the data scarcity issue, 
datasets can be expanded using unsupervised 
learning.  Future network designs must 
harmoniously balance speed and accuracy, 
broadening their applicability in the ultrasound 
imaging domain.
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