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Abstract

Forced-damped vibrations are pivotal in various medical applications, significantly contributing to the examination 
of tissue mechanical properties, development of medical devices, and understanding of biological systems’ com-
plexities. These vibrations represent the dynamic behavior of systems subjected to external forces and damping, 
where an external force continues to act, and damping determines the rate of energy dissipation. Advanced explo-
ration of damping properties has led to the creation of novel technologies and methods, enhancing our ability to 
probe and manipulate the complex mechanical dynamics of biological tissues.
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Highlights
● The study explores how forced-damped vibrations can be applied in various medical contexts. This may include    
  using vibrations for medical imaging techniques such as ultrasound or MRI, where vibrations are applied to the  
  body to generate images of internal structures.
● Vibrations can also be utilized for tissue characterization, diagnosis of medical conditions, and therapeutic          
   interventions such as vibration therapy for rehabilitation or pain management.

Introduction

Vibrational phenomena are ubiquitous in the 
medical field, observed in a myriad of contexts 
[1]. Defined as the repetitive oscillatory motion 
around a stable point, these phenomena range 
from the microscopic level to large structural 
scales [2, 3]. In healthcare, vibrations take 
various forms, including mechanical vibrations 
in medical equipment, acoustic vibrations 
affecting hearing, and electromagnetic vibra-
tions utilized in imaging technologies like MRI 
[4-6]. Analyzing these vibrations is vital, as 
they influence the design and functionality of 
diagnostic instruments, imaging systems, and 
therapeutic devices [7].

Vibrations in medical devices are characte-
rized by distinct mechanisms, leading to their 
categorization into free, forced, damped, and 
resonance vibrations [8-12]. This classification 
aids in understanding their unique behaviors 

and effects in medical settings [13]. Free vibra-
tions occur without external force, while forced 
vibrations arise from external stimuli. Damped 
vibrations gradually lose energy, and resonance 
vibrations occur at a specific frequency [14]. 
This classification is particularly relevant in me-
dical applications, influencing the design and 
operation of medical equipment, diagnostic 
procedures, and therapeutic devices [15, 16].

Free vibrations are initiated when a system is 
set into motion and allowed to oscillate without 
any external forces [17, 18]. This category of 
vibration is distinctly defined by the system’s 
natural frequency, a property dictated by its 
mass and stiffness characteristics. In the realm 
of medical devices, understanding and ana-
lyzing free vibrations is crucial, particularly in 
the design and operation of medical devices 
and instruments. Independent oscillations can 
significantly influence both performance and 
accuracy [19]. The natural frequency is vital for 
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understanding the intrinsic vibrational behavior 
of these systems in medical contexts [20].

Forced vibrations occur when an external force 
or stimulus is applied to a system, causing it 
to vibrate at a frequency that differs from its 
natural frequency [21, 22]. This vibration cate-
gory is marked by its variability, including both 
periodic and non-periodic patterns [23, 24]. 
The system’s response to forced vibrations is 
contingent upon the specific attributes of the 
forcing function and the inherent properties of 
the system [25-27]. Recognizing the effects of 
forced vibrations is essential in medical set-
tings, as external forces can alter the behavior 
of medical devices, diagnostic tools, and the-
rapeutic instruments [28-30]. A deep unders-
tanding of these vibrational dynamics is key to 
optimizing the design and function of medical 
systems, thereby ensuring better precision and 
effectiveness [31, 32].

Resonance vibrations occur when an external 
force or stimulus matches a system’s natural 
frequency, leading to significantly amplified os-
cillations [33]. This enhancement of vibrations 
can result in excessive, potentially harmful os-
cillations [34, 35]. In the medical field, where 
precision and stability are crucial, uncontrolled 
resonance vibrations pose significant risks [36, 
37]. Thus, effective control and improvements 
are essential to prevent the detrimental effects 
of increased vibrations on medical devices, ins-
truments, and structures [38, 39].

Damped vibrations represent a convergence 
of engineering innovation and healthcare pro-
gress [40]. With their controlled and reduced 
oscillations, damped vibrations serve a critical 
and diverse role in medicine [41, 42]. From 
diagnostic instruments to therapeutic strate-
gies, the incorporation of damped vibrations 
underscores a collaborative, multidisciplinary 
approach dedicated to enhancing patient care, 
refining diagnostic capabilities, and propelling 
the evolution of medical technologies [43-46]. 
This exploration delves into the varied applica-
tions of damped vibrations, highlighting their 
essential contribution to diagnostic processes, 
therapeutic approaches, and the overall goal 
of achieving optimal patient outcomes in the 
ever-evolving medical landscape [47, 48].

Furthermore, the researches majored in tissue 
engineering and regenerative medicine leve-
rages controlled vibrations to foster cell growth 
and direct tissue regeneration processes 
[49]. The application of damped vibrations in 
biomechanics research contributes to a deeper 
understanding of human movement, aiding in 

the development of rehabilitation strategies 
and orthopedic interventions [50, 51].

Applications of damped vibration in medicine

Damped vibrations are applied diversely within 
the medical sector, encompassing areas such 
as diagnostic imaging, medical devices, tissue 
engineering, and biomechanics research. The 
strategic implementation and exploration of 
damping characteristics play a pivotal role in 
driving forward medical technology, enhancing 
diagnostic procedures, and refining therapeutic 
practices [52].

Medical imaging

In the realm of medical imaging, damped 
vibrations serve to bolster diagnostic precision. 
Techniques like elastography utilize damped 
vibrations to evaluate tissue stiffness, em-
ploying induced vibrations to gather data on 
the mechanical properties of tissues. This ap-
proach is invaluable for identifying irregularities 
or diseases in organs. Specifically, variations 
in liver stiffness assessed through this method 
can reveal conditions such as cirrhosis, show-
casing the critical role of damped vibrations in 
diagnosing organ pathologies [52].

Ultrasound Imaging: Damped vibrations are 
integral to ultrasound imaging, where acoustic 
waves generate images of internal body struc-
tures. A deep understanding of the damping 
characteristics of tissues enhances the optimi-
zation of imaging techniques, leading to impro-
ved diagnostic accuracy [53].

MRI: In MRI, an appreciation of damped vibra-
tions is crucial for the development of pulse 
sequences and optimizing image quality.

Biomechanics and tissue characterization

Damped vibrations are pivotal in biomecha-
nics research, enabling the study of human 
body movement and its mechanical behaviors. 
This includes examining the damping proper-
ties of joints, bones, and soft tissues. Such 
researches, which are indispensable for craf-
ting rehabilitation methods, elucidating injury 
mechanisms, and advancing the design of or-
thopedic implants [52].

Simulating damped vibrations in a hypothetical 
system offers a parallel to biomechanical sys-
tems or tissues, where variables such as mass, 
stiffness, and damping ratio are tailored to mir-
ror the specific characteristics of the biomecha-
nical system or tissue in focus (Figure 1). 
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Figure 1 provides a detailed visualization of 
biomechanical systems or tissue characteriza-
tion, underscoring the necessity of employing 
physiological parameters and a sophisticated 
model for accuracy. The integration of actual 
biomechanical data is crucial for augmenting 
the realism and reliability of our simulations.

Vibration therapy
Within the realm of medical treatments, vibra-

tion therapy leverages controlled vibrations 
for therapeutic benefits. This innovative the-
rapy has been investigated for its potential to 
address a range of medical issues, particularly 
musculoskeletal disorders and rehabilitation 
needs. Although implementing vibration the-
rapy requires a nuanced understanding and 
is often tailored to specific medical scenarios, 
a hypothetical MATLAB example offers a sim-
plified model to demonstrate the principles of 
vibration therapy (Figure 2).

Figure 2 is a MATLAB example that simulates 
muscle signals over time to depict muscle acti-
vation both without and with vibration therapy. 
The lower subfigure introduces a controlled 
vibration signal, adding a sinusoidal compo-
nent, to mimic the effects of vibration therapy 
on muscle activation. In practical scenarios, the 
selection of vibration parameters and their im-
pact on muscle response are complex, necessi-
tating thorough analysis and experimentation. 
MATLAB is extensively used by researchers and 
healthcare practitioners for advanced signal 
processing and analysis, enabling a compre-
hensive study of vibration therapy’s effects on 
various physiological parameters [54].

Cardiovascular applications

Developing a detailed MATLAB application for 
modeling damped vibrations in cardiovascular 
applications entails intricate modeling and 
simulations, which extend beyond the topic of 
this review. The simulation of damped vibra-
tions in a hypothetical system can serve as a 
model for cardiovascular dynamics, with adjust-
ments to parameters like mass, stiffness, and 
damping ratio to reflect the specific characteris-
tics of the cardiovascular system under study.

For a more precise modeling of cardiovascular 
dynamics, employing physiological parameters 
and a sophisticated model is essential (Figure 
3). Furthermore, the inclusion of actual cardio-
vascular data would significantly improve the 
realism and accuracy of our simulations.

Figure 3 illustrates the specific behaviors of 
damped vibrations within a cardiovascular 
context, potentially showcasing the oscillatory 
movements within cardiovascular devices or 
systems. Such visualizations are crucial for un-
derstanding the dynamic aspects of cardiovas-
cular mechanics.

Blood Flow Analysis: Damped vibrations are 
instrumental in analyzing blood flow dynamics, 
particularly in examining arterial elasticity and 
in the design and optimization of cardiovascu-
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Figure 1. Damped vibration in biomechanics and tis-
sue characterization.
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Figure 2. Representation of vibration therapy.

Figure 3. Damped vibration in cardiovascular appli-
cation.
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lar devices. 

Heart Valve Dynamics: Analyzing the damped 
vibrations in heart valves aids in understanding 
their function and contributes to the develop-
ment of artificial heart valves (see Figure 4).

Rehabilitation robotics

Rehabilitation robotics is tailored to meet a 
wide array of user needs, with damped vibra-
tions playing a key role in enabling user-specific 
customization. This allows for adjustments to 
be made according to individual preferences, 
comfort levels, and specific rehabilitation goals, 
thereby enhancing both the user experience 
and the effectiveness of the rehabilitation pro-
cess.

Incorporating advanced sensor technologies 
into robotic exoskeletons and assistive devices, 
and coupling these with damped vibrations, fa-
cilitate precise control and coordination. This in-
tegration ensures that devices can intelligently 
adapt to the user’s movements and intentions. 
The strategic application of damped vibra-
tions within rehabilitation robotics significantly 
boosts the success of rehabilitation programs. 
By offering a controlled and comfortable setting 
for movement, individuals in rehabilitation are 
able to participate more fully in therapeutic 
exercises, leading to improved recovery outco-
mes [54].

Ensuring a comfortable and safe experience is 
crucial for the acceptance and compliance with 
rehabilitation robotics. Damped vibrations are 
instrumental in fostering a positive interaction 
between the user and the robotic device, en-
hancing user engagement in rehabilitation acti-
vities and potentially accelerating recovery [55].

Rehabilitation robotics frequently employs MAT-
LAB for control system design, data analysis, 
and simulation tasks. Figure 5 illustrates the 
results of such simulations.

Figure 5 serves as a graphical representation 
that showcases the outcomes and performance 
of a control system in rehabilitation robotics, 
featuring a straightforward second-order plant 
model paired with a PID controller. The details 
depicted within the figure provide valuable in-
sights into the control system’s dynamic beha-
vior and its effectiveness within a rehabilitative 
setting.

Dental applications

Tooth vibration analysis employs specialized 
instruments designed to initiate controlled 
vibrations and accurately measure the ensuing 
responses. These measurements yield crucial 
data regarding the dynamic behavior of teeth 
under various dental interventions.

For instance, during tooth drilling procedures, 
the interaction between dental instruments 

Figure 4. Prosthetic heart valves monitoring. The re-
ference was cited from [56].
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Figure 5. Results of a simple second-order plant mo-
del and a PID controller in a rehabilitation robotics.
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and the tooth structure gives rise to vibrations. 
Through damped vibration analysis, dentists 
gain a refined understanding of the mechanical 
responses of teeth to differing procedures, en-
hancing both diagnostic capabilities and treat-
ment precision [55].

The process of analyzing vibration amplitudes 
from an ultrasonic scaler with MATLAB typically 
involves the manipulation and graphical re-
presentation of data derived from the scaler’s 
vibrations. Figure 6 illustrates the simulation 
outcomes for the ultrasonic scaler application 
[55].

Figure 6 delves into the analysis of vibration 
amplitude in an ultrasonic scaler, offering criti-
cal insights that are essential for the optimiza-
tion of the scaler’s design, performance, and 
safety in dental or medical contexts. 

The analysis of tooth vibrations aids in the as-
sessment of structural integrity. Variations in 
vibration patterns can signal the presence of 
dental conditions such as cavities, cracks, or 
structural abnormalities. Such detailed infor-
mation is invaluable to dentists for accurate 
diagnosis and the formulation of effective treat-
ment plans [55].

Continued advancements in tooth vibration 
analysis are driving the development of new 
dental technologies and methodologies. This 
research-centric approach is pivotal in refining 
dental procedures, elevating diagnostic preci-
sion, and progressing the field of dental care.

Moreover, integrating tooth vibration analysis 
into dental education is crucial for the compre-
hensive training of future dental professionals. 
It equips aspiring dentists with a deep unders-
tanding of the mechanical dynamics involved in 

dental procedures, promoting a more knowled-
geable and proficient approach to patient care 
[55].

Magnification factor

The magnification factor, also known as the 
amplification factor or gain, is crucial in unders-
tanding how a dynamic system amplifies or 
attenuates input vibrations at specific frequen-
cies. It is typically depicted as a function of fre-
quency, illustrating the system’s behavior over 
a spectrum of frequencies [56].

In the context of a linear, single-degree-of-free-
dom system subjected to forced-damped vibra-
tions, the magnification factor (M) is commonly 
defined as the ratio of the response amplitude 
(X) to the amplitude of the applied force (F0). 
This relationship is mathematically represented 
as [38]:

M (ω) = X/F0                                          (1)

This formula of magnification factor is ex-
pressed as:

M (ω)= 1 /[(1 – (ω/ ωn)
 2)2 + (2ζω/ωn)

2 ]1/2                                

(2)

Where:
ω is the frequency of the input vibration.
ωn is the natural frequency of the system.
ζ is the damping ratio

The magnification factor is affected by the natu-
ral frequency and damping ratio of the system. 
When plotted against frequency, the Bode plot 
allows engineers and researchers to analyze 
how the system responds to different input 
frequencies. A peak in the magnification factor 
indicates resonance, where the system’s res-
ponse is magnified (see Figure 7).

The Bode diagram showcasing the magnifica-
tion factor as a function of frequency offers a 
comprehensive representation of a dynamic 
system’s response characteristics. This graphi-
cal representation is invaluable in analyzing 
structural, mechanical systems, and vibrational 
behaviors, providing critical insights into how 
these systems respond to varying frequencies.

Conclusion

Damping is  paramount in  the realm of 
forced-damped vibrations, serving to dissipate 
energy and diminish the amplitude of oscilla-
tions over time. The presence of various dam-
ping forms, such as friction or fluid resistance, 
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influences a system’s response, guiding it 
towards equilibrium. Forced-damped vibrations 
are described through mathematical models, 
typically differential equations, facilitating a 
deep understanding of the system’s dynamics. 
This includes insights into steady-state and 
transient responses, resonance frequencies, 
and additional pivotal properties.

The exploration of forced-damped vibra-
tions enables engineers to design resilient 
structures, enhance machine efficiency, and 
ensure the stability and safety of mechani-
cal systems. Furthermore, the application of 
damped vibrations in medicine emerges as a 
critical and multifaceted component of health-
care and biomedical research. Through the 
investigation of damped vibrations, significant 
advancements have been made, particularly 
in understanding the mechanical properties 
of biological tissues. This knowledge is instru-
mental across a wide range of medical appli-
cations, underscoring the indispensable role 
of damped vibrations in advancing healthcare. 
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