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Abstract

The aging population is accompanied by a decline in human body function, leading to an increasing number of 
people with lower limb dysfunction, which has become a global public health challenge today. The lower limb reha-
bilitation exoskeleton robot based on surface electromyography is a current research hotspot. It can help people 
with lower extremity dysfunction perform better rehabilitation training. This review presents the analysis and pro-
cessing of surface electromyography, feature extraction and recognition, as well as the control methods for lower 
limb rehabilitation exoskeleton robots.

Keywords: Surface electromyography, lower limb exoskeleton robot, feature identification, rehabilitation treatment, 
man-machine interaction

Highlights

In this review, the latest progress of threshold control, proportional control and pattern recognition control based 
on surface electromyography in lower limb rehabilitation exoskeleton robots are presented.

Introduction

The aging of the population is leading to a de-
cline in human body function. The knee joint is 
particularly susceptible to injury because it is 
the largest and most intricate part of the hu-
man body [1]. Lower limb rehabilitation exoskel-
eton robots (LLRERs) can replace rehabilitation 
physicians to give accurate, efficient, intelligent, 
and scientific lower limb rehabilitation training, 
reduce the burden of clinical treatment, and 
help people with disabilities restore their physi-
ological functions.

At present, there are many ways to control in-
telligent LLRERs based on bioelectrical signals, 
such as electroencephalogram, electromyo-
gram (EMG), electro-oculogram, surface elec-
tromyography (sEMG), and electroneurographic 

signals. Compared with other bioelectrical sig-
nals, sEMG is less affected by the external en-
vironmental factors and has the characteristics 
of non-invasiveness, ease of acquisition and 
good robustness in measurement. The sEMG 
itself contains the body motion state and in-
tention information of human muscles [2]. The 
generation of sEMG is about 30-150 ms ahead 
of muscle contraction [3]. Therefore, sEMG can 
be collected to predict the continuous motion 
intention of the lower limb and applied to the 
human-computer interaction control of the LL-
RER.

The lower extremity exoskeleton rehabilitation 
robot based on sEMG can increase the pa-
tient-computer interface and has deep control 
characteristics such as real-time controllability 
and sensitivity. The real-time controllability 
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of this rehabilitation robot can help patients 
achieve real-time control and improve the safe-
ty of equipment. The perceptibility of this robot 
can perceive the treatment condition and alter 
the control strategy in time to optimize the re-
al-time control effect, so that the rehabilitation 
training can be adjusted autonomously.

sEMG Analysis and Data Processing

sEMG is a comprehensive reaction of action 
potential generated by shallow muscle contrac-
tion on the skin surface, which can be obtained 
from the surface of human muscle by the sur-
face electrode [4]. Feature extraction is the 
basis for the analysis of sEMG, because sEMG 
cannot be directly used to control a LLRER with-
out preprocessing. To ensure the accuracy of 
sEMG control, additional analysis and feature 
extraction are required to extract feature infor-
mation relating to muscle or joint motion inten-
tion and filter out duplicate information [5]. Cur-
rently, ongoing research on sEMG is expanding 
the utilization of feature extraction methods for 
sEMG analysis. The theoretical methods can be 
classified into time domain analysis, frequency 
domain analysis, time-frequency domain anal-
ysis, high-order spectral analysis, and chaotic 
and fractal analysis.

Time domain analysis

The time domain analysis method reflects 
sEMG changes with time and is one of the most 
widely used sEMG feature extraction methods 
due to its simplicity and high computational 
efficiency. The root mean square (RMS) value, 
zero crossing points, integrated electromyogra-
phy value, variance, waveform length, Willision 
amplitude, autocorrelation function, slope 
change number, EMG histogram, etc. can be 
calculated by the sEMG amplitude-time graph 
as the time domain features of sEMG [6-14]. 
Raj et al. extracted the integrated electromy-
ography value and zero crossing time domain 
features of biceps sEMG and used these two 
time domain features as input parameters of 
the radial basis function neural network model. 
The results showed that they had a good effect 
in identifying human forearm movement [15]. 
Duan et al. proposed the top and slope time-do-
main feature extraction algorithm, which can 
better extract the temporal properties of sEMG 
and has better recognition accuracy in human 
lower limb motion patterns [16].

Frequency domain analysis

The time domain feature, as a characteristic 

value of sEMG, is easy to calculate and easy 
to extract, therefore, widely used. However, the 
time domain feature is greatly affected by mus-
cle contraction force, whereas this problem can 
be addressed by frequency domain analysis, 
which reflects the changes in sEMG in the fre-
quency dimension. Frequency domain analysis 
primarily involves converting the sEMG signals 
from the time domain to the corresponding 
frequency domain signal using Fourier trans-
form. This transformation allows the extraction 
of power spectrum, spectrum, and other rele-
vant information from the frequency domain 
signal of sEMG [17]. In order to quantitatively 
describe the relative changes and power spec-
trum curves of different frequency components 
of sEMG, the mean power frequency and the 
median frequency are often chosen as the 
frequency domain eigenvalue indexes of sEMG 
[18]. Hameed et al. used the mean instanta-
neous frequency value of sEMG as an adaptive 
decision threshold to detect flexor activity with 
higher robustness [19].

Time-frequency domain analysis

Both time domain analysis and frequency do-
main analysis can only conduct a single analy-
sis of either time-domain or frequency-domain 
characteristics of sEMG, whereas time-frequen-
cy domain analysis is based on the functions of 
both time and frequency domains. It can com-
prehensively analyze the both characteristics 
and combine their advantages to make full use 
of the energy changes presented by sEMG in 
different frequency and time domains [20]. At 
present, the time-frequency analysis methods 
of sEMG mainly include the short-time Fourier 
transform (STFT), the Wigner-Ville transforma-
tion, Choi-Williams distribution, and the wavelet 
transform (WT) [21-23].

The STFT can segment non-stationary signals, 
which can then be analyzed and processed 
as stationary signals. However, the STFT has 
limitations in sensitively reflecting the direc-
tion of the time-frequency domain and signal 
mutation. It can only deal with slowly changing 
signals. Therefore, the STFT can be used to 
analyze and extract the sEMG when it chang-
es slowly. The Wigner transform is the Fourier 
transform of instantaneous correlation function 
of signals. It provides information about the 
time-frequency distribution characteristics of 
signal energy. Choi-Williams distribution can 
use its exponential core function to filter out 
the influence of cross terms on the sEMG, 
which can lead to information redundancy. Fur-
thermore, the control parameter can be used 
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to adjust the resolution of automatic terms and 
the influence of cross terms based on the char-
acteristics of the collected sEMG. The WT inher-
its and builds upon the concept of localization 
in the STFT and overcomes the disadvantage 
of a fixed window size in the STFT that does not 
adapt to frequency changes. Stretching and 
shifting can be used for multi-scale refinement 
for the local mutation of sEMG in order to cap-
ture arbitrary detail feature changes. Karheily 
et al. used the STFT, the continuous WT, and 
Stockwell time-frequency domain characteriza-
tion to classify hand motion, and reported an 
accuracy of 90.05%, 89.92%, and 90.96%, re-
spectively [24]. Chen et al. employed the STFT 
method to establish a STFT embedded system 
that detects muscle contraction, and reported 
an accuracy of up to 91.55% [25].

High-order spectral analysis

sEMG is a kind of non-stationary, non-determin-
istic, nonlinear, and non-Gaussian micro signal. 
However, because traditional random signal 
processing technology is based on second-or-
der statistics, the power spectrum and linearity 
of sEMG cannot meet the actual requirements. 
High-order spectral analysis can effectively sup-
press all kinds of additive Gaussian noise, and 
detect the phase and amplitude of nonlinear 
structure reconstruction at the same time [26]. 
Using high-order spectral analysis of sEMG can 
make full use of the various information fea-
tures of sEMG. Zhang et al. processed sEMG 
with the complex Morlet WT and constructed 
multi-order tensor data information containing 
time, space, frequency, and task information, 
which can effectively analyze the multi-dimen-
sional feature information of sEMG under fa-
tigue [27].

Chaotic and fractal analysis

Traditional sEMG analyses are based on lin-
ear analysis theory, but linear analysis theory 
is only a tool for solving nonlinear problems. 
Chaos theory is a kind of stochastic process 
that appears in a deterministic system and has 
the characteristics of nonlinearity, uncertain-
ty, non-balance, and sensitivity. Chaos theory 
can be used for the analysis and processing 
of sEMG and is helpful to extract more infor-
mation from sEMG [28, 29]. The clustering 
characteristics of chaotic features can be ex-
pressed through Lyapunov index, phase planar 
graph, power spectrum and other parameters. 
Fractal theory is the product of chaotic dynamic 
processes. It has the characteristics of self-sim-
ilarity and irregularity under different scales. 
You et al. showed that the fractal dimension 
and the maximum Lyapunov exponent reflect-
ed the clustering characteristics of different 
action postures, and the chaotic feature could 
be used as the input of the classifier, which 
improved the robustness of action recognition 
[29]. Khodadadi et al. calculated the collected 
sEMG by using the Petrosian method and the 
Grassberger & Procaccia method and obtained 
fractal dimension and correlation dimension 
chaotic features, respectively, where fractal 
dimension and correlation dimension well de-
scribed the chaotic behavior of biceps sEMG 
[30].

The characteristics of sEMG signals are shown 
in Table 1.

Control technologies based upon sEMG

sEMG can represent muscle activity intention 
30-150 ms in advance and is associated with
muscle function and activity status to various

Table 1. Comparison of sEMG feature extraction methods
Feature extraction 
methods Advantages Disadvantages

Time domain analysis Simple calculation with features that are easy to 
extract

Unstable, and incapable of fully 
utilizing the information of the sEMG

Frequency domain 
analysis Characteristically stable Only suitable for handling stable 

sEMG

Time-frequency do-
main analysis Having time-frequency domain characteristics Not sensitive to the capture of muta-

tional signals

High-order spectral 
analysis

Capable of reconstructing the amplitude and 
phase of the sEMG, recognizing the nonlinear 
structure of its time series and automatically 
suppressing various additive Gaussian noises

Immature technology, and complex 
calculation

Chaotic and fractal 
analysis

Capable of extracing the cluster distribution char-
acteristics of sEMG in different action postures Complex parameters and calculation

Note: sEMG, surface electromyography. 
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degrees. Therefore, sEMG is often used in as-
sistive devices, functional electrical stimulation, 
and other rehabilitation control fields. The mo-
tion intention of the lower limb is obtained after 
the sEMG collected from the skin is handled 
by amplification, filtering, differentiation, inte-
gration, machine learning, and deep learning. 
Then, the motion intention information is ap-
plied as the driving control source of the LLRER 
[31, 32]. Thus, the LLRER can be controlled 
for rehabilitation training and other functions. 
At present, with the development of sEMG re-
search, there are increasing control methods 
for LLRERs based on sEMG. The methods can 
be classified into three categories according to 
the theoretical methods used: threshold con-
trol method, proportional control method, and 
pattern recognition control method. Figure 1 
shows the control flow of the LLRER based on 
sEMG.

Threshold control method

The threshold control method is also called 
digital switch control. It takes the amplitude or 
characteristic value of the sEMG as the input 
parameter. Setting a fixed threshold and em-
ploying adaptive decision threshold algorithms 
are typical threshold determination strategies. 
Fixed thresholds are often defined based on 
feature values extracted by sEMG and deter-
mined through many experiments following 
completion of the specified task. The adaptive 
decision threshold method may autonomously 
adjust the threshold changes based on the 
amplitude characteristics of sEMG and is intact 
by sEMG nonautonomous amplitude variations. 
This reduces the number of false alarms that 
may occur with a fixed preset threshold and im-
proves biomimetic robot control performance.

When the threshold control system detects that 
the input parameter of the control object ex-
ceeds the threshold value, it outputs the control 
command signal to regulate the rehabilitation 
training of the LLRER. Krebs et al. of the Mas-
sachusetts Institute of Technology extracted 
the amplitude of the sEMG as the input param-

eter of the threshold control system. When the 
amplitude of the sEMG exceeded the threshold, 
they started controlling the rehabilitation robot 
in real time to provide stroke patients with sup-
plemental rehabilitation treatment [33]. Zhang 
et al. collected sEMG of medial gastrocnemius 
and tibialis anterior, and used RMS value as 
input parameter of the threshold control sys-
tem, and then generated control instructions to 
control exoskeleton for dorsiflexion and plantar 
flexion movements [34]. Wang et al. collected 
sEMG of the left calf, right calf, left shoulder, 
and right shoulder, respectively, and calculated 
the instantaneous power of sEMG by using the 
STFT, and then used the instantaneous power 
as the input parameter of the threshold control 
system to automatically generate real-time con-
trol signals [35]. 

Xu et al. tried to solve the problem of real-time 
control of multifunctional prostheses among 
high-level amputee individuals with two differ-
ent methods. The first method used the pattern 
recognition algorithm to classify sEMG and 
then used pattern recognition to control mul-
tifunctional prostheses. The second method 
used threshold control based on the mean ab-
solute value of sEMG. The experimental results 
showed that the threshold switch control based 
on mean absolute value of sEMG could accom-
plish all motor tasks in less time and was more 
accurate and smoother in both experimental 
and practical applications [36]. Hameed et al. 
adopted the frequency feature of sEMG as an 
adaptive decision threshold to reduce errors 
caused by ineffective fixed decision thresholds, 
and the sEMG detection performance was sig-
nificantly improved [19]. Si et al. used the dou-
ble threshold method to assess and detect the 
RMS of sEMG to recognize various lower limb 
motion modes (walking, straight leg lifting, tip-
toeing, and squatting). The results of the exper-
iments demonstrated that the double threshold 
algorithm exhibited remarkably decent detec-
tion accuracy for lower limb motions not only 
under normal conditions, but also under fatigue 
conditions [37].

Figure 1. Flow diagram of lower limb exoskeleton control based on sEMG. 
sEMG, surface electromyography.
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Threshold control, also known as digital switch 
control, is relatively easy to implement, but 
it cannot proportionally reflect the amplitude 
characteristic change of sEMG. It is only suit-
able for mode switch control of exoskeleton 
robots, with promising detection performance 
and control effect. The control that needs the 
linkage of output torque and speed of control 
system with the amplitude and variation of 
the eigenvalue of sEMG may not be a suitable 
threshold control method, but it is undoubtedly 
the optimal choice for the control to only use 
sEMG as the real-time digital switch. Table 2 
shows the control effects of the threshold con-
trol mode in controlling the robot in different 
research institutes.

Proportional control method

The threshold control method does not fully 
utilize the rich motion intention information 
of sEMG, and only dual-mode or limited multi-
mode control can be used to control the lower 
limb exoskeleton robot. To compensate for 
the lack of threshold control, the proportional 
control can output control signal instructions in 
proportion to the sEMG signal, thus adjusting 
the system’s open-loop gain and improving the 
control system’s steady-state accuracy. In this 
manner, the output force, speed, torque, and 
other parameters of lower limb exoskeleton 
robot can be regulated proportionally based 
on the strength of the sEMG signal. Sawicki 
et al. collected sEMG of the soleus muscle as 
the input control parameter of a lower limb or-
thotic control system and found that subjects’ 
muscles could be adjusted to respond to the 
change in musculoskeletal biomechanics, re-
sulting in a better control effect [38]. As shown 
in Figure 2, hybrid assistive limb (HAL) was cre-
ated in conjunction with Cyberdyne Systems by 
the University of Tsukuba in Japan. The HAL-3 
has four disk motor drives on the buttocks and 
knees as joint driving forces. The HAL-5 also in-
cludes drives at shoulder and elbow [39-41].

Figure 3 shows the lower limb exoskeleton 
robot developed by Fleischer et al. based on 
sEMG control. Fleischer collected sEMG from 
the leg muscle to establish a linear relation-
ship between sEMG amplitude and joint torque 
during knee movement [42]. The lower ex-
tremity exoskeleton robot could be controlled 
systematically to carry out auxiliary motion [43]. 
Hofmann et al. improved the amplitude estima-
tion based on Bayesian filtering and applied it 

Table 2. Comparison of control effects based on sEMG threshold control method

Research institution Site for sEMG acquisition The chosen eigenval-
ues for the sEMG Control effect

MIT Biceps, Triceps, Chest 
muscle Amplitude Better rehabilitation training for 

stroke patients

Shanghai University MG and TA RMS Achieve real-time dorsiflexion and 
plantar flexion mode movement

East China University of 
Science and Technology

Left calf, Right calf, Left 
shoulder, Right shoulder Instantaneous Power Achieve real-time extraction of

control instruction signal

Shanghai Jiao Tong Univer-
sity

Triceps brachii, Biceps 
brachii MAV

Achieve real-time control of mul-
tifunctional prosthesis for high 
amputee patients

Universiti Putra Malaysia Flexor Digitorum Superfi-
cialis muscle

Average Instanta-
neous Frequency 
Value

Improve the performance of sEMG 
motion detection

University of Electronic 
Science and Technology of 
China

Rectus femoris, Biceps 
femoris and Gastrocne-
mius muscles

RMS Achieve high accuracy of lower limb 
motion detection

Figure 2. HAL-3 on the left and HAL-5 on the right. 
This figure is cited from [41, 48]. HAL, Hybrid assis-
tive limb. HAL, Hybrid assistive limb.

Note: sEMG, surface electromyography; MIT, Massachusetts Institute of Technology; MG, medial gastrocnemius; 
TA, tibialis anterior; RMS, root mean square; MAV, mean absolute value. 
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to the Statistical Process Control framework. 
The efficiency of this method for Statistical 
Process Control electromyographic control was 
thoroughly investigated using goal-oriented on-
line experiments on healthy and limb-disabled 
subjects, respectively. Experiments showed that 
compared with traditional amplitude estima-
tors, the proposed Bayesian filtering amplitude 
estimation framework could estimate the po-
tential “neural drive” carried by sEMG from the 
nervous system more smoothly, and was more 
sensitive to the mutation of neural signals [44].

Proportional control compensates for the lim-
itations of threshold control by responding to 
changes in the amplitude and eigenvalue of the 
sEMG through feedback. Proportional control 
can adjust the speed and torque of the lower 
limb exoskeleton machine force according to 
changes in the contraction strength of sEMG, 
making it conform to the natural control of 
human factors engineering. Table 3 shows the 
comparison of control effects of rehabilitation 
equipment developed by different research in-
stitutes using proportional control.

Pattern recognition control method

To enrich the information obtained from sEMG, 
various sEMG feature sets are proposed, and 
pattern recognition methods are used to dis-
tinguish the types of movements activated by 
different limbs and parts. To establish the map-
ping relationship between sEMG and gesture 
intention, pattern recognition uses machine 
learning and deep learning. When pattern rec-
ognition control is applied to the lower limb exo-
skeleton robot and other rehabilitation medical 
equipment, the trained pattern recognition sys-
tem first judges the sEMG, and then the pattern 
recognition system output control instructions 
to drive the motor, air pressure, hydraulic, and 
other driving systems, resulting in perceptual 
control of the lower limb exoskeleton robot.

Li et al. combined the general regression neu-
ral network with the Adaboost algorithm to cre-
ate a powerful classifier, with the accuracy for 
motion pattern classification reaching 96.7% 
[45]. Zou et al. used the multi-scale fuzzy 
entropy feature vector as the input vector of 
the support vector machine, and the average 

Table 3. Comparison of control effects using the sEMG proportional control method

Research institution Site for sEMG acquisition The chosen eigenval-
ues for the sEMG Control effect

University of Michigan Soleus Amplitude Achieve adaptive adjustment of 
lower limb orthotics by sEMG

Technical University of 
Berlin

Rectus femoris, Vastus 
medialis, Vastus lateralis, 
Semimembranosus

Amplitude Simplify the control of lower 
limb exoskeleton robot

Tsukuba University 
and Cyberdyne Sys-
tems

Rectus femoris Amplitude
Achieve HAL movement in 
accordance with the subject’s 
motor intent

Emory University Arm Amplitude based on 
Bayesian filtering

Achieve precise control of mul-
tifunctional prosthesis

Note: sEMG, surface electromyography; HAL, hybrid assistive limb.

Figure 3. Lower limb exoskeleton robot based on leg sEMG control. This figure is cited from [43]. sEMG, surface 
electromyography.
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recognition rate reached 97%, which was 3% 
higher than the original fuzzy entropy used as 
the feature input parameter [46]. Duan et al. 
classified sEMG using discrete WT and wavelet 
neural network algorithms, and trained wavelet 
neural network using back propagation and 
gradient descent algorithms. For sEMG, wave-
let neural network has a maximum recognition 
accuracy of 100% and a classification accuracy 
of 94.67% on average [16]. Bittibssi et al. clas-
sified and recognized sEMG using the recurrent 
neural network model based on long short-term 
memory, convolution peephole long short-term 
memory, and gated recurrent unit, with a pre-
diction accuracy of 99.6% [47].

The lower limb exoskeleton robot can be con-
trolled in multiple functional modes using 
pattern recognition control, which enhances us-
er-friendliness and enables a more sophisticat-
ed and intelligent human-machine interaction. 
On the other hand, proportional control allows 
adjustment of the robot’s output parameters, 
such as speed and torque, according to the 
strength of surface EMG signal. Table 4 com-
pares the control results of different research 
teams who used pattern recognition to control 
robots.

Conclusion

In conclusion, the analysis and feature ex-
traction of sEMG have provided us with a vari-
ety of approaches to effectively handle different 
types of sEMG signals. With the continuous de-
velopment of signal processing technology and 
the combination of various processing technol-
ogies, we will have a deeper understanding of 
sEMG. Therefore, the extracted feature values 
will possess enhanced capabilities for motion 
intention recognition. This will enable extensive 
utilization of sEMG for real-time synchronous 

control of LLRERs.

The control methods based on sEMG involve 
threshold control, proportional control, and 
pattern recognition control. Different control 
strategies can be adopted based on the proper-
ties of different mechanical structures. Due to 
various injury sites and phases of rehabilitation 
treatment, patients with lower limb dysfunction 
have different rehabilitation needs for intelli-
gent LLRERs. sEMG is frequently employed in 
rehabilitation medical devices, human-comput-
er interface, and other fields, because it can re-
flect limb motion intention. Although the LLRER 
based on sEMG has achieved good research re-
sults, it still faces challenges such as intelligent 
rehabilitation treatment process, continuous 
improvement of comprehensive performance, 
and establishment of the LLRER evaluation sys-
tem.
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