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Abstract

Cardiovascular diseases are still the primary threats to people’s health around the world. Automatic heart sound 
classification technology, as a fast and efficient means for diagnosis and treatment, is of great clinical signifi-
cance. With the rapid development of artificial intelligence technology, deep learning algorithms are widely used 
in automatic heart sound classification. This paper reviewed the key technologies related to the automatic classi-
fication of heart sounds in recent years, including heart sound denoising, segmentation, feature extraction, and 
classification recognition. The classification and recognition technologies related to deep learning are presented 
in detail, with a focus on the application and development of convolutional neural network and recurrent neural 
network, as well as various combination models for heart sound classification in the past five years.

Keywords: Cardiovascular disease, deep learning, heart sounds classification, convolutional neural network, recur-
rent neural network

Highlights
● Denoising, segmentation, and feature extraction of heart sounds as well as its classification process are reviewed.
● A detailed exposition of diverse deep learning methods for heart sounds classification is presented.

Introduction

Cardiovascular diseases (CVDs) are associ-
ated with a high fatality rate and posing an 
escalating threat to public health [1]. In 2019, 
approximately 17.9 million global deaths were 
attributed to CVDs, with heart disease and 
stroke constituting 85% of it. In low- and mid-
dle-income countries, approximately 75% of the 
financial burden endured by individuals with 
cardiovascular conditions can be attributed to a 
lack of adequate medical resources [1].

CVDs, such as hypertension, coronary heart 
disease, and heart failure, are featured by rap-
id onset and substantial damage. Thus, early 
detection of heart diseases is of vital impor-
tance. A significant physiological signal directly 
associated with CVDs is the heart sound signal, 
a primary tool for diagnosing CVDs. Through 
analysis of cardiac sound waves, physicians 
can identify abnormal characteristics. However, 
heart sound auscultation currently presents 

two key limitations. Firstly, human auditory sen-
sitivity constraints may complicate the discern-
ment of faint physiological sounds from human 
internal organs [2]. Secondly, the accuracy 
of heart sound auscultation may be critically 
constrained when physicians lack comprehen-
sive knowledge and clinical experience, as the 
diagnostic results are limited by doctors’ sub-
jective expertise and subjectivity [3]. As a con-
sequence, the use of computer software-based 
heart sound analysis in the precise diagnosis 
of cardiovascular illnesses is in line with the 
trend.

Phonocardiogram (PCG) refers to audio data 
captured via the electronic stethoscope, and 
the heart sound signals can be classified by us-
ing computer-assisted techniques [4]. The pa-
rameters of these heart sound signals can vary 
based on the condition of the heart. Notably, 
there is a substantial divergence between nor-
mal and pathological cardiac sounds, as their 
corresponding PCG signals differ in character-
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istics such as magnitude, duration, intensity, 
spectrum, and uniformity [5].

With the precipitous advancement in digital 
signal processing and artificial intelligence 
technologies, deep learning has been exten-
sively explored in the field of automatic heart 
sound analysis. It has the potential to reduce 
the labor costs associated with manual extract-
ing features by employing data-driven feature 
learning. This approach is anticipated to bring 
about significant advances in the field of heart 
sound auscultation, and it is expected to be im-
plemented in mobile devices.

Heart sounds and datasets

Heart sound signals are mechanical vibrations 
generated by the contraction and relaxation of 
the myocardium, as well as the interactions of 
blood flow with the valves, the atrioventricular 
walls, and vascular systems. These vibrations 
are transmitted through the surrounding tis-
sues to the skin, generating sound signals on 
body surface. Heart sound signals are quasi-pe-
riodic. A typical cardiac cycle signal consists of 
four components: the first heart sound, the sys-
tolic phase, the second heart sound, and the 
diastolic phase [6]. In certain populations, the 
third and fourth heart sounds may also exist.

Heart murmur is an abnormal heart sound sig-
nal in the cardiac cycle, which contains patho-
logical information of various CVDs. The most 
common heart murmurs are caused by valvular 
diseases, such as aortic stenosis, mitral regur-

gitation, mitral stenosis, mitral valve prolapse, 
and tricuspid regurgitation [7].

Among the existing studies, PhysioNet/Comput-
ing in Cardiology Challenge 2016 dataset is the 
most commonly used dataset to verify the per-
formance of the heart sound classification algo-
rithms, which contains only normal and abnor-
mal heart sounds [8]. Figure 1 shows examples 
of these two heart sounds. There is another 
dataset that is widely used in the multi-classi-
fication task of heart sounds [9]. This dataset 
contains five categories of sounds, namely nor-
mal, aortic stenosis, mitral regurgitation, mitral 
stenosis, and mitral valve prolapse. Figure 2 
shows the examples of these five types of heart 
sounds.

Process of heart sound classification

The automatic heart sound classification pro-
cesses include denoising, segmentation, fea-
ture extraction, and classification.

Denoising

Due to the susceptibility to external factors, 
heart sound signals are commonly disrupted by 
disturbances, such as electromagnetic interfer-
ence, random noise, and respiratory sounds. 
Therefore, the preliminary step in automatic 
heart sound classification involves the denois-
ing of these signals. Two commonly employed 
techniques for heart sound signal denoising are 
discrete wavelet transform (DWT) and empirical 
mode decomposition (EMD). 

Figure 1. Samples of PCG records from PhysioNet /Computing in Cardiology Challenge 2016 dataset. PCG, 
Phonocardiogram.
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DWT is a pivotal tool used for the analysis in 
the time-frequency domain. The core of this 
technique involves calculating the wavelet 
coefficients of both the noise and the heart 
sound signals. This is achieved by adjusting 
the scaling and shifting parameters of the so-
called mother wavelet. Following this step, an 
appropriate threshold function can be identi-
fied and utilized to reconstruct the denoised 
heart sound signals [10]. Ali et al. conducted 
an examination on the influences of the wave-
let basis function type, the threshold function 
type, and the signal decomposition level on the 
performance of the discrete wavelet denois-
ing methodology [11]. In a distinct approach, 
Zhang et al. proposed an adjustable threshold 
function which can be fine-tuned using two pa-
rameters [12]. These adjustments alter the soft 
and hard threshold properties of the function, 
thus enhancing the integrity of the denoised 
heart sound signals. Despite the effectiveness 
of the DWT methodology, one significant draw-
back is that the denoised heart sounds may 
suffer from localized distortion, especially in the 
presence of anomalous heart sound signals.

Contrarily, EMD technique separates heart 
sound signals into several intrinsic mode func-
tions, each comprising both heart sound com-
ponents and noise components. By selectively 
eliminating the noise components, heart sound 
denoising can be achieved [13]. Furthermore, 
there have been experiments that combine 

the two methods. For instance, Dong et al. pro-
posed a wavelet transform denoising technique 
grounded in complementary population EMD 
[14]. This method partitions the cardiac sound 
signals into intrinsic mode function compo-
nents of varying frequencies. Then, the auto-
correlation coefficient is deployed to distinguish 
between the pertinent signals and the noise 
within the range of the modal components. 
Following this, the heart sound signals are fil-
tered and reconstructed employing the wavelet 
transform, resulting in the acquisition of the 
denoised heart sound signal.

The two methods have shown broad appli-
cability in the field of heart sound denoising, 
although each of them faces some challenges. 
For DWT-based methods, their denoising effec-
tiveness largely depends on thresholds, wave-
let basis functions, and decomposition levels. 
The selection of these variables greatly affects 
the results, thereby leading to difficulties in pa-
rameter selection [15]. In contrast, EMD-based 
methods are highly sensitive to noise and suf-
fer from issues such as the modal confusion 
[16]. Therefore, despite their wide application, 
these two strategies still have a large amount 
of research potential and room for optimization.

Segmentation

Heart sound segmentation is the division of the 
heart sound signals into multiple cardiac cy-

Figure 2. Samples of PCG records of five categories from the dataset. PCG, phonocardiogram; AS, aortic 
stenosis; MR, mitral regurgitation; MS, mitral stenosis; MVP, mitral valve prolapse.
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cles. In order to improve the accuracy of heart 
sound classification, automatic heart sound 
analysis focuses on segmentation of heart 
sounds. Currently, there are many successful 
heart sound segmentation methods, which are 
roughly classified into two categories. One is 
envelope-based segmentation method, and the 
other is based on statistical modelling.

The envelope-based segmentation is commonly 
employed in segmentation algorithms for heart 
sounds. The cardiac cycle is determined by 
detecting the peak value of the first or second 
heart sound following the extraction of the 
heart sound envelope. In the heart sound seg-
mentation methods based on envelope, there 
are techniques, such as normalized average 
Shannon energy, Hilbert transform, homomor-
phic filtering, heart sound feature waveform 
extraction, Hilbert-Huang transform, and short-
time corrected Hilbert transform [17-22]. In an 
in-depth research, Choi et al. examined and 
analyzed the envelope extraction techniques 
of the normalized Shannon envelope, the Hil-
bert transform envelope, and the heart sound 
characteristic waveform [23]. They found that 
the heart sound characteristic waveform enve-
lope extraction method has uniform first heart 
sound and second heart sound information 
compared to the normalized Shannon envelope 
and Hilbert transform envelope curve.

In addition to using envelope analysis for heart 
sound segmentation, methods based on sta-
tistical models are also widely used, such as 
the hidden Markov model, the ensemble EMD 
method, the K-means clustering algorithm, and 
dynamic clustering [24-27]. These methods 
segment heart sound signals by utilizing differ-
ent characteristics of the heart sound signals, 
such as the distribution of time-frequency ener-
gy, systole, and time-relatedness.

Both the two types of methods are widely used 
in the field of heart sound segmentation, but 
each has its own drawbacks. Envelope-based 
heart sound segmentation methods are sus-
ceptible to environmental noise interference, of-
ten missing the true peaks of the heart sounds 
but detecting noise peaks instead. Heart sound 
segmentation methods based on statistical 
models are constrained by the high degree of 
signal specificity in heart sounds across differ-
ent individuals, making it challenging to model 
all heart sound signals with a unified model.

Feature extraction

The main purpose of feature extraction of heart 
sounds is to find some effective features to 

replace the high-dimensional original informa-
tion. Presently, the characteristics employed 
for classifying heart sounds can be categorized 
as time domain, frequency domain, statistical 
domain, and time-frequency domain features. 
The methods including DWT, continuous wave-
let transform, short-time Fourier transform, and 
Mel frequency cepstral coefficients (MFCC) are 
widely  feature extraction [28-32]. Mel frequen-
cy spectral coefficient, as a MFCC without the 
discrete cosine transform, retains more of the 
original data [33-39]. MFCC and Mel frequency 
spectral coefficient can extract comparable 
characteristics of human perception of loud-
ness and tone from audio data, hence they are 
commonly utilized in speech signal processing. 
In the field of heart sound feature extraction, 
several improved methods have been pro-
posed. For instance, Deng et al. proposed an 
improved MFCC feature extraction method, 
which reduces the computational complexity 
and can dynamically represent the heart sound 
signals [40]. Likewise, Cheng et al. proposed an 
improved approach for classifying heart sounds 
by integrating MFCC with Gammatone Frequen-
cy Cepstral Coefficients [41].

In conclusion, due to the unique nature of 
heart sound signals, feature extraction is a crit-
ical step in the automatic classification of heart 
sounds, playing a significant role in the accu-
racy of subsequent heart sound classification 
results. Therefore, it is essential to continuously 
conduct research and improve methodology to 
optimize heart sound feature extraction.

Classification

Classification of heart sounds primarily pro-
vides qualitative data of heart sound detection 
and often separates heart sound signals into 
normal and pathological forms. Currently, ma-
chine learning techniques, such as support 
vector machine, hidden Markov model, artificial 
neural network, K-nearest neighbor method, 
and Euclidean distance, are utilized extensively 
in heart sound classification. By extracting the 
P value of features, Yadav et al. examined the 
performance of support vector machines, Na-
ive Bayes model, random forest, and K-nearest 
neighbor in classifying heart sounds [42]. Deep 
learning techniques, such as convolutional 
neural networks (CNNs) and recurrent neural 
networks (RNNs), which are detailed in depth in 
Section 4, are the most popular approaches for 
classifying heart sounds.

Application of deep learning in heart sound 
classification



59

Progress in Medical Devices 2023; 1 (2): 55-64. PMD23020183

Progress in Medical Devices

This part reviews the applications of CNNs, 
RNNs, and Hybrid methods in heart sound 
classification. The research literature in recent 
years is shown in Table 1.

CNN methods for heart sound classification

CNN is a traditional model of deep learning. 
The LeNet is a typical CNN model proposed by 
Lecun et al. , as illustrated in Figure 3 [52]. It 
consists of an input layer, two convolutional 
layers, two pooling layers, two fully connected 
layers, and an output layer. CNNs extract data 
features through the convolution layer based on 
local perception and decrease the parameter 

scale of the model via a weight-sharing tech-
nique, and the convolution process has local 
perception and weight sharing characteristics. 
The pooling layer, also known as the downsam-
pling layer, efficiently reduces network param-
eters to minimize overfitting. The completely 
linked layer resides at the end of the CNNs. 
Each neuron of the fully connected layer is 
connected to the neurons of the previous layer, 
and the multi-dimensional feature vectors cal-
culated by the previous layer are mapped into 
one-dimensional vectors, which reduces the 
influence of the feature position arrangement 
on the classification results and increases the 
network’s robustness.

Table 1. Literature on heart sound classification using deep learning

No. Year Reference Method Input Features Results

1 2018 Meintjes et al. [29] CNN Scalograms Sensitivity 
87.4%

Specificity 
86.7%

Accuracy 
93.8%

2 2018 Bozkurt et al. [43] CNN Sub-band Envelopes Sensitivity 
84.5%

Specificity 
78.5%

MAcc 
81.5%

3 2019 Tan et al. [33] CNN MFSC Accuracy 
89.6%

4 2019 Tan et al. [34] CNN MFSC Sensitivity 
91%

Specificity 
88%

Accuracy 
89.5%

5 2021 Xu et al. [44] CNN PSD Sensitivity 
77.6%

Specificity
94.6%

Accuracy 
84.7%

6 2021 Boulares et al. [31] CNN MFCC Sensitivity 
94.6%

Specificity 
94.6%

Accuracy 
97%

7 2022 Li et al. [32] CNN MFCC Sensitivity 
89.5%

Specificity 
89.7%

8 2021 Shen et al. [45] CNN Spectrograms Sensitivity
91.2%

Specificity 
92.1%

Accuracy 
91.1%

9 2021 Wang et al. [46] CNN Sub-band Envelopes Accuracy 
85.7%

10 2022 Azam et al. [47] CNN MFCC&Fbank Accuracy 
86.2%

F1 
84%

MAcc 
85.1%

11 2022 Chen et al. [41] CNN MFCC&GFCC Sensitivity 
93.8%

Specificity 
88.8%

Accuracy 
91.3%

12 2021 Chen et al. [35] CNN MFSC Accuracy 
99.5%

13 2021 Meng et al. [36] CNN MFSC Sensitivity 
98.5%

Specificity 
97.2%

Accuracy 
98.2%

14 2017 Maknickas et al. 
[37] CNN MFSC Sensitivity 

80.6%
Specificity 
86.66%

Accuracy 
93.7%

15 2022 Zhang et al. [38] CNN MFSC Sensitivity 
92.5%

Specificity 
98.6%

Accuracy 
96.6%

16 2022 Zhu et al. [39] CNN-LSTM MFSC Sensitivity 
84.3%

Specificity 
85.6%

Accuracy 
84.4%

17 2020 Li et al. [48] CNN-LSTM Spectrograms Accuracy 
85.7%

18 2022 Liu et al. [49] CNN-LSTM Second order spec-
trum

Sensitivity 
96.6%

Specificity 
95.6%

Accuracy 
95.3%

19 2022 Al-Issa et al. [50] CNN-LSTM FFT Accuracy 
93.8%

F1 
85.6%

AUC 
95.1%

20 2022 Chen et al. [51] CNN-LSTM  Sequence Sensitivity 
87.0%

Specificity 
89.0%

Accuracy 
86.0%

Note: CNN, convolutional neural network; MFSC, Mel frequency spectral coefficient; PSD, power spectral density; 
MFCC, Mel frequency cepstral coefficients; GFCC, Gammatone Frequency Cepstral Coefficients; LSTM, long short-
term memory networks; FFT, fast fourier transform; AUC, area under the curve; MAcc, mean accuracy.
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Several optimization algorithms based on LeN-
et have been explored by researchers, with 
representative algorithms including AlexNet, 
GoogleNet, VGGNet, ResNet, and DenseNet. 
These algorithms have shown exemplary perfor-
mance in heart sound classification tasks. For 
instance, Maknickas et al. proposed a heart 
sound classification model based on AlexNet, 
and obtained an accuracy of 93.7% [37]. Dis-
tinct from the most fundamental CNN model, 
AlexNet employs ReLU instead of Sigmoid as 
the activation function to avoid gradient van-
ishing when the network is deep and utilizes 
dropout to reduce the complexity of the model 
to prevent overfitting.

The performance of CNNs is affected by depth, 
width, and the size of the convolution kernel. 
The deepening of the number of network layers 
will have more linear transformations, which 
will help improve network performance. Howev-
er, as the depth reaches a certain degree, mod-
el training becomes more difficult, culminating 
in the disappearance of gradients. In 2015, 
He et al. presented ResNet based on residual 
learning module, with network parameters of 
up to 152 layers, which can more effectively 
address the training challenges caused by net-
work depth [53]. ResNet is currently more com-
mon in the classification of heart sounds. 

Subsequent studies have built upon this foun-
dation. For example, Zhang et al. presented 
a ResNet50 based on bilinear homologous 
transformation [38]. The model is comprised 
of multi-layer combinations of bottleneck 
structures with cross-layer connections and 
incorporates convolutional attention modules, 
better cross-entropy loss functions, and label 
smoothing techniques extensively. The greatest 
accuracy score reached 96.6%. Not resting 
on these laurels, further research pushed the 
boundaries of accuracy. Chen et al. proposed 
a heart sound classification model based on 
Inception-ResNet, using ResNet to increase the 
network’s depth and convergence speed, and 
to improve the Inception network’s accuracy 
[41]. The maximum possible score could reach 

99.5% correctness.

However, the superiority of ResNet over other 
network models is not always clear-cut. As 
illustrated by Li et al., when comparing the 
performance of VGG and ResNet, the lack of a 
more complex network model can lead to an 
equivalent performance of the two [32]. In fact, 
the VGG model employing Focal loss and Log 
Mel features achieved an Unweighted Average 
Recall of 89.6% across all test groups. 

Efforts to enhance CNN performance didn’t 
stop at ResNet. Meng et al. compared the per-
formance of CNN based on single connection 
(SingleCNN), skip connection (SkipCNN), and 
dense connection (DenseCNN) in the classifica-
tion of heart sounds [36]. They investigated the 
effect of several convolutional layer connection 
methods on the classification of heart sounds. 
DenseCNN includes dense connections that 
enable the reuse of heart sound information, 
allowing the network to extract more heart 
sound features with fewer layers. DenseCNN 
had superior performance compared to the 
other two models, achieving 98.2% accuracy, 
98.5% sensitivity, 97.2% specificity, and 0.0557 
loss. 

The application of CNNs in heart sound classifi-
cation has witnessed considerable progression 
over the years, with successive studies contrib-
uting fresh perspectives and avenues for future 
exploration. These advancements underscore 
the extensive potential of CNNs within the 
realm of biomedical engineering. However, they 
also remind us of the crucial role that continu-
ous inquiry and research play in further propel-
ling the advancement within this discipline.

RNN methods and hybrid methods for heart 
sound classification

Compared with CNNs, RNNs have excellent 
time modeling ability and is widely used in nat-
ural language processing, speech recognition, 
and other fields. RNNs are feed-forward neural 
network variant with internal memory. With the 

Figure 3. Network structure of LeNet. 
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help of the internal memory structure, RNNs 
can memorize historical data and effectively 
predict future data. The typical structure of the 
RNN model is shown in Figure 4. The Xt is the 
input of the current module, and the ht is calcu-
lated as the output and participates in the input 
of the next module. Although RNNs have great 
advantages in time series modeling, it also 
has problems such as vanishing and exploding 
gradient. In order to solve these problems, re-
searchers have proposed improved RNN mod-
els, including long short-term memory networks 
(LSTM) and gated recurrent units (GRU). LSTM 
is composed of forgetting gate, input gate and 
output gate, which make up for the deficiency 
of ordinary RNNs by introducing linear self-cir-
culation unit. GRU is an important variant of 
LSTM. It uses update gate instead of forgetting 
gate and output gate, which makes GRU have 
fewer parameters and is easier to converge.

Further research by Bao et al. delved into the 
effects of different feature inputs on these 
network models [54]. In their study, the MFCC 
static features, and the extended MFCC with 
dynamic features, were used respectively as 
inputs to test their impacts on CNN and RNN 
models. Their findings suggest that the ex-
tended MFCC did not significantly improve the 
performance of RNN, although the accuracy 
of CNN using MFCC with dynamic features did 
show a slight improvement. Interestingly, when 
the static features of MFCC were used as in-
put, RNN models outperformed CNN. However, 
among different RNN models, such as LSTM, 
bidirectional LSTM, GRU, and bidirectional GRU, 
no significant differences in performance were 
observed.

In audio processing, the CNN is more suitable 
for identifying specific portions of sounds, while 
the RNN is more excellent at handling sequenc-
es that vary over time. Each has its respective 
advantages, hence, the integration of CNN and 

RNN has become a prevalent direction in re-
search.

A variety of studies have examined this ap-
proach. Chen et al. proposed the use of one-di-
mensional sequences as feature inputs, and 
the performance of a network combination of 
CNN and LSTM outperforms single networks, 
achieving an accuracy of 86.0% [36]. While 
using one-dimensional sequences as feature 
inputs does not have the best performance, it 
is beneficial for applications in real-time detec-
tion. On a similar note, Li et al. utilized CNN to 
extract the frequency domain features of data, 
complemented by the use of RNN to draw out 
the time domain features. This method yielded 
a classification accuracy rate of 85.7% [48]. In 
another study, Liu et al. explored the effective-
ness of different CNN-LSTM structures in heart 
sound classification, demonstrating that the 
convolution kernel’s size within the CNN can 
yield better outcomes within a certain range 
[49]. Additionally, they found that the single-lay-
er unidirectional and single-layer bidirectional 
LSTM models were the most effective. However, 
they also noted that increasing the number of 
LSTM layers could impact the model’s accu-
racy negatively. Despite this, their approach 
achieved a noteworthy classification accuracy 
of 95.2%.

Moreover, Al-Issa et al. designed a lightweight 
CNN-LSTM model to distinguish between five 
categories of heart valvular disorders [50]. 
They highlighted that using frequency domain 
features post-FFT transformation as input could 
enhance heart sound classification perfor-
mance. They achieved an accuracy of 93.8%, 
a F1 score of 85.6%, and an AUC of 95.1% on 
the binary classification dataset. Additionally, 
on the enhanced five-class classification data-
set, they attained an accuracy of 99.87%, a F1 
score of 99.87%, and an AUC of 99.85%.

Figure 4. Network structure of RNN. RNN, recurrent neural network.
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The integration of CNNs and RNNs, among 
other networks, is a well-adopted strategy, serv-
ing to unite the individual strengths of these 
architectures whilst offsetting their respective 
weaknesses. CNNs are particularly proficient 
in handling tasks related to image processing 
or spatial pattern recognition. On the other 
hand, RNNs are highly effective in dealing with 
sequence data and temporal pattern recogni-
tion. By combining these two, the stability and 
generalization capability of the model can be 
greatly enhanced. In real-world applications, 
this hybrid approach has been proven to be 
successful in numerous instances, demonstrat-
ing the flexibility offered by deep learning tech-
niques and highlighting the potential of such 
combined models.

Summary and prospective

In recent years, as the frequency of CVDs has 
increased, automatic heart sound diagnosis 
technologies have enabled clinicians to diag-
nose patients more quickly and precisely, con-
tributing to the healthcare system. This review 
summarizes the most recent research in the 
field of heart sound automatic classification 
during the past five years, the research status 
of denoising, segmentation, and feature ex-
traction, and the use of a deep learning model 
in heart sound classification.

With the ongoing advancement of deep learn-
ing, numerous effective deep learning models, 
including CNN and RNN algorithms, have been 
presented and used in heart sound categori-
zation. The algorithm model that combines the 
properties of the CNN and RNN is currently the 
study focus, and examination of datasets re-
veals that these algorithms have excellent per-
formance and strong classification results. How-
ever, the complexity of the present heart sound 
categorization model needs to be reduced. The 
deployment of the lightweight model in mobile 
devices is anticipated to significantly improve 
the application of heart sound automatic cate-
gorization technologies.

Due to the lack of heart sound datasets, the 
majority of existing heart sound classification 
algorithms utilize both normal and abnormal 
heart sound datasets. However, various kinds 
of cardiac murmurs exist. Thus, to further assist 
physicians in the diagnosis of cardiovascular 
disorders, it is still important to increase and 
improve the heart sound datasets and investi-
gate the multi-classification model in order to 
more precisely identify the types of heart mur-
murs.
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